DOI QR코드

DOI QR Code

Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State

3차 상태방정식을 이용한 수소 충전 온도 거동 모사

  • PARK, BYUNG HEUNG (School of Chemical and Material Engineering, Korea National University of Transportation)
  • 박병흥 (한국교통대학교 화공신소재고분자공학부)
  • Received : 2019.09.25
  • Accepted : 2019.10.31
  • Published : 2019.10.31

Abstract

The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

Keywords

References

  1. J. Turner, G. Sverdrup, M. K. Mann, P.-C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, "Renewable hydrogen production", Int. J. Energy Res., Vol. 32, 2007, pp. 379-407, doi: https://doi.org/10.1002/er.1372.
  2. S. E. Hosseini and M. A. Wahid, "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development", Renew. Sust. Energ. Rev., Vol. 57, 2016, pp. 850-866, doi: https://doi.org/10.1016/j.rser.2015.12.112.
  3. B. D. Solomon and A. Barierjee, "A global survey of hydrogen energy research, development and policy", Energy Policy, Vol. 34, 2006, pp. 781-792, doi: https://doi.org/10.1016/j.enpol.2004.08.007.
  4. G. Cipriani, V. Di Dio, F. Genduso, D. La Cascia, R. Liga, R. Miceli, and G. R. Galluzzo, "Perspective on hydrogen energy carrier and its automotive applications", Int. J. Hydrog. Energy, Vol. 39, 2014, pp. 8482-8494, doi: https://doi.org/10.1016/j.ijhydene.2014.03.174.
  5. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, and J. Yang, "Development of high pressure gaseous hydrogen storage technologies", Int. J. Hydrog. Energy, Vol. 37, 2012, pp. 1048-1057, doi: https://doi.org/10.1016/j.ijhydene.2011.02.125.
  6. Society of Automotive Engineers (SAE), "Fueling protocols for light duty gaseous hydrogen surface vehicles (Standard J2601_201407)", SAE International, 2014, doi: https://doi.org/10.4271/j2601_201407.
  7. Society of Automotive Engineers (SAE), "Fueling protocols for light duty gaseous hydrogen surface vehicles (Standard J2601_201612)", SAE International, 2016, doi: https://doi.org/10.4271/j2601_201612.
  8. M. Monde, P. Woodfiled, T. Takano, M. Kosaka, "Estimation of temperature change in practical hydrogen pressure tanks being filled at high pressure of 35 and 70 MPa", Int. J. Hydrog. Energy, Vol. 37, 2012, pp. 5723-5734, doi: https://doi.org/10.1016/j.ijhydene.2011.12.136.
  9. R. Ortiz Cebolla, B. Acosta, N. de Miguel, and P. Moretto, "Effect of precooled inlet gas temperature and mass flow rate on final state of charge during hydrogen vehicle refueling", Int. J. Hydrog. Energy, Vol. 40, 2015, pp. 4698-4706, doi: https://doi.org/10.1016/j.ijhydene.2015.02.035.
  10. H. M. Roder, D. E. Diller, L. A. Weber, and R. D. Goodwin, "The orthobaric densities of parahydrogen, derived heats of vaporization, and critical constants", Cryogenics 3, 1963, pp. 16-22, doi: https://doi.org/10.1016/0011-2275(63)90065-1.
  11. H. M. Roder, L. A. Weber, and R. D. Goodwin, "Thermodynamic and related properties of parahydrogen from the triple point to 100 K at pressures to 340 atmospheres", NBS Monograph 94, 1965, doi: https://doi.org/10.6028/nbs.mono.94.
  12. R. D. McCarty and L. A. Weber, "Thermophysical properties of parahydrogen from the freezing liquid line to 5000 R for pressures to 10000 psia", NBS Technical Note 617, 1972, doi: https://doi.org/10.6028/nbs.tn.617.
  13. H. M. Roder, R. D. McCarty, and W. J. Hall, "Computer programs for thermodynamic and transport properties of hydrogen (tabcode-II)", NBS Technical Note 625, 1972, doi: https://doi.org/10.6028/nbs.tn.625.
  14. R. D. McCarty, "Hydrogen technology survey: thermophysical properties", NASA-SP-3089, 1975. Retrieved from https://www.osti.gov/biblio/7339659.
  15. R. D. McCarty, J. Hord, and H. M. Roder, "Selected properties of hydrogen (engineering design data). Final report", NBS Monograph 168, 1981. Retrieved from https://www.osti.gov/biblio/5861835.
  16. O. Kunz, R. Klimeck, W. Wagner, and M. Jaeschke, "The GERG-2004 wide-range equation of state for natural gases and other mixtures", GERG Technical Monograph 15, 2007. Retrieved from https://www.osti.gov/etdeweb/biblio/2092 4249.
  17. B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, "The properties of gases and liquids", 5th Ed., MaGraw-Hill, 2001, doi: https://doi.org/10.1021/ja0048634.
  18. H. Chen, J. Zheng, P. Xu, L. Li, Y. Liu, and H. Bie, "Study on real-gas equations of high pressure hydrogen", Int. J. Hydrog. Energy, Vol. 35, 2010, pp. 3100-3104, doi: https://doi.org/10.1016/j.ijhydene.2009.08.029.
  19. J. Xiao, S. Ma, X. Wang, S. Deng, T. Yang, and P. Benard, "Effect of hydrogen refueling parameters on final state of charge", Energies, Vol. 12, 2019, p. 645, doi: https://doi.org/10.3390/en12040645.
  20. The International Organization for Standardization (ISO), "ISO/TS 19880-1:2016(en), Gaseous hydrogen Fuelling stations, Part 1: General requirements". Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:ts:19880:-1:ed-1:v1:en, 2016.