• Title/Summary/Keyword: Human Interaction Recognition

Search Result 336, Processing Time 0.023 seconds

Recognition and Generation of Facial Expression for Human-Robot Interaction (로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법)

  • Jung Sung-Uk;Kim Do-Yoon;Chung Myung-Jin;Kim Do-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

Road Traffic Control Gesture Recognition using Depth Images

  • Le, Quoc Khanh;Pham, Chinh Huu;Le, Thanh Ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a system used to automatically recognize the road traffic control gestures of police officers. In this approach,the control gestures of traffic police officers are captured in the form of depth images.A human skeleton is then constructed using a kinematic model. The feature vector describing a traffic control gesture is built from the relative angles found amongst the joints of the constructed human skeleton. We utilize Support Vector Machines (SVMs) to perform the gesture recognition. Experiments show that our proposed method is robust and efficient and is suitable for real-time application. We also present a testbed system based on the SVMs trained data for real-time traffic gesture recognition.

  • PDF

Context-Independent Speaker Recognition in URC Environment (지능형 서비스 로봇을 위한 문맥독립 화자인식 시스템)

  • Ji, Mi-Kyong;Kim, Sung-Tak;Kim, Hoi-Rin
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • This paper presents a speaker recognition system intended for use in human-robot interaction. The proposed speaker recognition system can achieve significantly high performance in the Ubiquitous Robot Companion (URC) environment. The URC concept is a scenario in which a robot is connected to a server through a broadband connection allowing functions to be performed on the server side, thereby minimizing the stand-alone function significantly and reducing the robot client cost. Instead of giving a robot (client) on-board cognitive capabilities, the sensing and processing work are outsourced to a central computer (server) connected to the high-speed Internet, with only the moving capability provided by the robot. Our aim is to enhance human-robot interaction by increasing the performance of speaker recognition with multiple microphones on the robot side in adverse distant-talking environments. Our speaker recognizer provides the URC project with a basic interface for human-robot interaction.

  • PDF

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

Relationships between teacher's recognition of professionalism, child's gender, term care and child's social interaction behavior (교사의 전문성 인식, 유아의 성별 및 보육기간과 유아의 사회적 상호작용 행동)

  • Yun, Juyoen;Shin, Hyewon
    • Korean Journal of Human Ecology
    • /
    • v.22 no.5
    • /
    • pp.407-417
    • /
    • 2013
  • The purpose of this study was to investigate and analyze how teachers' recognition of professionalism and the child's gender and term care affect child's social interaction behavior. Participants were three-year-old 61 children and their 20 teachers. Each child was observed by the time sampling method of 20 sec-observation followed by 10 sec-recording for a total of 14 minutes. The teachers completed the rating scales to measure the teachers' recognition of professionalism. The study results show that, children engaged more frequently in individual behavior than in interactions with peers or with teachers in day care centers. And those children had more interaction behavior with their teachers than with their peers. Correlation between teachers' recognition of professionalism and children's social interaction behavior were as following: the more the teachers recognized professionalism, the more the children showed positive interaction behavior toward their teachers. Also, the more the teachers recognized the professionalism related to the job satisfaction, the more the children showed positive interaction behavior toward their peers. Boys interacted more negatively with peers and teachers than girls did. Children who attended the day care center more than two years showed less individual behaviors than others.

Automatic Gesture Recognition for Human-Machine Interaction: An Overview

  • Nataliia, Konkina
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.129-138
    • /
    • 2022
  • With the increasing reliance of computing systems in our everyday life, there is always a constant need to improve the ways users can interact with such systems in a more natural, effective, and convenient way. In the initial computing revolution, the interaction between the humans and machines have been limited. The machines were not necessarily meant to be intelligent. This begged for the need to develop systems that could automatically identify and interpret our actions. Automatic gesture recognition is one of the popular methods users can control systems with their gestures. This includes various kinds of tracking including the whole body, hands, head, face, etc. We also touch upon a different line of work including Brain-Computer Interface (BCI), Electromyography (EMG) as potential additions to the gesture recognition regime. In this work, we present an overview of several applications of automated gesture recognition systems and a brief look at the popular methods employed.

Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction (휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Multimodal Emotion Recognition using Face Image and Speech (얼굴영상과 음성을 이용한 멀티모달 감정인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 2012
  • A challenging research issue that has been one of growing importance to those working in human-computer interaction are to endow a machine with an emotional intelligence. Thus, emotion recognition technology plays an important role in the research area of human-computer interaction, and it allows a more natural and more human-like communication between human and computer. In this paper, we propose the multimodal emotion recognition system using face and speech to improve recognition performance. The distance measurement of the face-based emotion recognition is calculated by 2D-PCA of MCS-LBP image and nearest neighbor classifier, and also the likelihood measurement is obtained by Gaussian mixture model algorithm based on pitch and mel-frequency cepstral coefficient features in speech-based emotion recognition. The individual matching scores obtained from face and speech are combined using a weighted-summation operation, and the fused-score is utilized to classify the human emotion. Through experimental results, the proposed method exhibits improved recognition accuracy of about 11.25% to 19.75% when compared to the most uni-modal approach. From these results, we confirmed that the proposed approach achieved a significant performance improvement and the proposed method was very effective.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Interaction Intent Analysis of Multiple Persons using Nonverbal Behavior Features (인간의 비언어적 행동 특징을 이용한 다중 사용자의 상호작용 의도 분석)

  • Yun, Sang-Seok;Kim, Munsang;Choi, Mun-Taek;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.738-744
    • /
    • 2013
  • According to the cognitive science research, the interaction intent of humans can be estimated through an analysis of the representing behaviors. This paper proposes a novel methodology for reliable intention analysis of humans by applying this approach. To identify the intention, 8 behavioral features are extracted from the 4 characteristics in human-human interaction and we outline a set of core components for nonverbal behavior of humans. These nonverbal behaviors are associated with various recognition modules including multimodal sensors which have each modality with localizing sound source of the speaker in the audition part, recognizing frontal face and facial expression in the vision part, and estimating human trajectories, body pose and leaning, and hand gesture in the spatial part. As a post-processing step, temporal confidential reasoning is utilized to improve the recognition performance and integrated human model is utilized to quantitatively classify the intention from multi-dimensional cues by applying the weight factor. Thus, interactive robots can make informed engagement decision to effectively interact with multiple persons. Experimental results show that the proposed scheme works successfully between human users and a robot in human-robot interaction.