References
- Khan, U.M., Kabir, Z., Hassan, S. A., Ahmed, S. H.: A Deep Learning Framework Using Passive WiFi Sensing for Respiration Monitoring. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1-6, doi: 10.1109/GLOCOM.2017.8255027 (2017)
- Zhao, M., Li T., Alsheikh, M.A., Tian Y., Zhao H., Torralba A., Katabi D.: Through-Wall Human Pose Estimation Using Radio Signals. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7356-7365, doi: 10.1109/CVPR.2018.00768 (2018)
- Dix, A.: Human-Computer Interaction. In: Encyclopedia of Database Systems, pp. 1734-1739. New York, NY: Springer New York (2018).
- Mitra, S., & Acharya, T.: Gesture Recognition: A Survey. In: IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews: A Publication of the IEEE Systems, Man, and Cybernetics Society, vol. 37(3), pp. 311-324. doi:10.1109/tsmcc.2007.893280 (2007).
- Sarkar, A.R., Sanyal, G., Majumder, S.: Hand Gesture Recognition Systems: A Survey. In: International Journal of Computer Applications (2013)
- Bansode, R., Pashte, S., Sawant, S., Sabnis, S.K.: Drowsy Driver Detection System. In: International Journal for Scientific Research & Development, vol. 5, no. 2, pp. 2134-2137 (2016)
- Janveja, I., Nambi, A., Bannur, S., Gupta, S., & Padmanabhan, V.: InSight: Monitoring the state of the driver in low-light using smartphones. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4(3), pp.1-29. doi:10.1145/3411819 (2020).
- Low, T., Bubalo, N., Gossen, T., Kotzyba, M., Brechmann, A, Huckauf, A., Nurnberger, A.: Towards Identifying User Intentions in Exploratory Search using Gaze and Pupil Tracking. In: Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval (CHIIR '17). Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3020165.3022131 (2017).
- Chen, Y., Tian, Y., He, M.: Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods. In: Computer Vision and Image Understanding (CVIU), vol. 192, https://doi.org/10.1016/j.cviu.2019.102897 (2020).
- Zheng, C., Wu, W., Yang, T., Zhu, S., Chen, C., Liu, ., Shen, J., Kehtarnavaz, N., Shah, M.: Deep Learning-Based Human Pose Estimation: A Survey. Arxiv Preprint (2021)
- Marinoiu, E., Papava, D., & Sminchisescu, C.: Pictorial human spaces: How well do humans perceive a 3D articulated pose? In: 2013 IEEE International Conference on Computer Vision (2013)
- Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J.: SMPL: A skinned multi-person linear model. In: ACM Transactions on Graphics, vol. 34(6), pp. 1-16 (2015)
- Pons-Moll, G., Romero, J., Mahmood, N., & Black, M. J.: Dyna: A model of dynamic human shape in motion. In: ACM Transactions on Graphics, vol. 34(4), pp. 1-14 (2015)
- Zuffi, S., Black, M.J.: The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose. In: Computer Vision and Pattern Recognition (CVPR) (2015).
- Joo, H., Simon, T., Sheikh, Y.: Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies. In: Computer Vision and Pattern Recognition (CVPR) (2018).
- Xu, H., Bazavan, E. G., Zanfir, A., Freeman, W. T., Sukthankar, R., Sminchisescu, C.: Ghum & ghuml: Generative 3d human shape and articulated pose models. In: Computer Vision and Pattern Recognition (CVPR) (2020).
- Pfister T., Simonyan K., Charles J., Zisserman A.: Deep Convolutional Neural Networks for Efficient Pose Estimation in Gesture Videos. In: (eds) Computer Vision - ACCV 2014. ACCV 2014. Lecture Notes in Computer Science, vol. 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_35 (2015).
- Li, S., Liu, Z.Q., Chan, A.B.: Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 482-489 (2014).
- Gkioxari, G., Hariharan, B., Girshick, R., Malik, J.: R-cnns for pose estimation and action detection. In: arXiv preprint arXiv:1406.5212 (2014).
- Fan, X., Zheng, K., Lin, Y., Wang, S.: Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation. In: arXiv preprint arXiv:1504.07159 (2015)
- Luvizon, D.C., Picard, D., Tabia, H.: 2D/3D pose estimation and action recognition using multitask deep learning. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 5137-5146 (2018)
- Luvizon, D.C., Tabia, H., Picard, D.: Human pose regression by combining indirect part detection and contextual information. In: arXiv preprint arXiv:1710.02322 (2017)
- Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. In: arXiv preprint arXiv:1801.07372 (2018)
- Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 4733-4742 (2016)
- Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: Proc. IEEE International Conference on Computer Vision, p. 7 (2017)
- Holland, A. C., O'Connell, G., & Dziobek, I.: Facial mimicry, empathy, and emotion recognition: a meta-analysis of correlations. In: Cognition & Emotion, vol. 35(1), pp.150-168. (2021). https://doi.org/10.1080/02699931.2020.1815655
- Cuncic, A.: How to better understand facial expressions. In: Verywell Mind. Retrieved December 19, 2021, from https://www.verywellmind.com/understanding-emotionsthrough-facial-expressions-3024851 (March 30, 2021)
- Cowen, A.S., Keltner, D., Schroff, F., Jou, B., Adam, H., Prasad G.: Sixteen facial expressions occur in similar contexts worldwide. In: Nature, vol.589(7841), pp. 251-257 (2021) https://doi.org/10.1038/s41586-020-3037-7
- Nogales, R.E., Benalcazar, M.E.: Hand gesture recognition using machine learning and infrared information: a systematic literature review. In: International Journal of Machine Learning and Cybernetics, vol. 12, pp. 2859-2886 (2021) https://doi.org/10.1007/s13042-021-01372-y
- Luo, W., Schwing, A. G., & Urtasun, R.: Efficient deep learning for stereo matching. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- Hamid, M. S., Fajar, N., Manap, A., Hamzah R.A., Kadmin A.F.: Stereo matching algorithm based on deep learning: A survey. In: Journal of King Saud University - Computer and Information Sciences (2020)
- Rao, N., Surana, P.M, Ragesh, R., Srinivasa G.: Analysis of Joints for Tracking Fitness and Monitoring Progress in Physiotherapy. In: The Proceedings of IEEE International Conference on Signal and Image Processing Applications (IEEE ICSIPA 2019), Malaysia (2019)
- Yang, W., Peng, Y., & Xie, H.: Action Recognition Based on Kinect Deep Learning. In: Journal of Frontiers of Society, Science and Technology, vol. 1(2), pp.11-15 (2021)
- Anson, D., Brandon, C., Davis, A., Hill, M., Michalik, B., & Sennett, C.: Swype vrs. conventional on-screen keyboards: Efficacy compared. In: RESNA Annual Conference (2012)
- Shokat, S., Riaz, R., Rizvi, S. S., Abbasi, A. M., Abbasi, A. A., & Kwon, S. J.: Deep learning scheme for character prediction with position-free touch screen-based Braille input method. In: Human-Centric Computing and Information Sciences, vol. 10(1), pp. 1-24 (2020) https://doi.org/10.1186/s13673-019-0205-6
- Lu, D., Yu, Y., & Liu, H.: Gesture recognition using data glove: An extreme learning machine method. In : 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 1349-1354 (2016) https://doi.org/10.1109/robio.2016.7866514
- Bablani, A., Edla, D. R., Tripathi, D., & Cheruku, R.: Survey on brain-computer interface: An emerging computational intelligence paradigm. In: ACM Computing Surveys, vol. 52(1), pp.1-32 (2019)
- Jaramillo, A. G., & Benalcazar, M. E.: Real-time hand gesture recognition with EMG using machine learning. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). pp. 1-5 (2017)
- Baldeon, K., Onate, W., & Caiza, G.: Augmented reality for learning sign language using Kinect tool. In: Smart Innovation, Systems and Technologies, pp. 447-457. Springer Singapore (2021)
- Ergurel, D.: Leap Motion announces $50 million in Series C funding. In: Haptical. https://haptic.al/leap-motionannounces-50-million-in-series-c-funding-a1a1f8c0440a (2017, July 18)
- Hayward, A.: Nintendo Wii U review. In: TechRadar. https://www.techradar.com/reviews/gaming/gamesconsoles/nintendo-wii-u-1084120/review (2015, December 1)
- Grover, S.: Myo gesture armband. In: CyberGeeks. https://cybergeeks.in/myo-armband/ (2014, December 30)
- Data Glove_Products & Solutions_Goertek. In: Goertek.Com. Retrieved December 19, 2021, from https://www.goertek.com/en/content/details62_16718.html (n.d.)
- Koles, Z.J, Lazar, M.S, Zhou, S.Z.: Spatial patterns underlying population differences in the background EEG. In: Brain Topography, vol. 2(4), pp. 275-284 (1990) https://doi.org/10.1007/BF01129656
- Boye, A. T., Kristiansen, U. Q., Billinger, M., Nascimento, O. F. do, & Farina, D.: Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. In: Biomedical Signal Processing and Control, vol.3(4), pp.300-304 (2008) https://doi.org/10.1016/j.bspc.2008.05.001
- Andersen, A. H., Gash, D. M., & Avison, M. J.: Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. In: Magnetic Resonance Imaging, vol.17(6), pp.795-815 (1999) https://doi.org/10.1016/S0730-725X(99)00028-4
- Herault, J., Jutten, C., Denker, J.S.: Space or time adaptive signal processing by neural network models. In: AIP Conference Proceedings, vol. 151, pp. 206-211 (1986)
- Xu, N., Gao, X., Hong, B., Miao, X., Gao, S., Yang, F. BCI competition 2003-dataset IIb: Enhancing P300 wave detection using ICA-based subspace projections for BCI applications. In: IEEE Transactions on Biomedical Engineering, vol.51(6), pp.1067-1072 (2004) https://doi.org/10.1109/tbme.2004.826699
- Bell, A.J, Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. In: Neural Computation, vol.7(6), pp. 1129-1159 (1995) https://doi.org/10.1162/neco.1995.7.6.1129
- Delorme, A., & Makeig, S.: EEG changes accompanying learned regulation of 12-Hz EEG activity. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, vol.11(2), pp.133-137 (2003) https://doi.org/10.1109/TNSRE.2003.814428
- Kanoga, S., Nakanishi, M., & Mitsukura, Y.: Assessing the effects of voluntary and involuntary eyeblinks in independent components of electroencephalogram. In: Neurocomputing, vol.193, pp. 20-32 (2016) https://doi.org/10.1016/j.neucom.2016.01.057
- Ting, W., Guo-zheng, Y., Bang-hua, Y., & Hong, S.: EEG feature extraction based on wavelet packet decomposition for brain computer interface. In: Measurement: Journal of the International Measurement Confederation, vol.41(6), pp. 618-625 (2008) https://doi.org/10.1016/j.measurement.2007.07.007
- Yang, B.-H., Yan, G.-Z., Wu, T., & Yan, R.-G.: Subject-based feature extraction using fuzzy wavelet packet in brain-computer interfaces. In: Signal Processing, vol.87(7), pp. 1569-1574 (2007) https://doi.org/10.1016/j.sigpro.2006.12.018
- Wang, X., Xia, M., Cai, H., Gao, Y., & Cattani, C.: Hidden-Markov-Models-based dynamic hand gesture recognition. In: Mathematical Problems in Engineering, pp. 1-11 (2012)
- Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time sequential images using hidden Markov model. In: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn., Champaign, IL, pp. 379-385 (1992)
- Starner, T., & Pentland, A. Real-time american sign language recognition from video using hidden markov models. In: Motion-based recognition. Springer, Dordrecht, pp. 227-243 (1997)
- Starner, T., Weaver, J., & Pentland, A.: Real-time American sign language recognition using desk and wearable computer based video. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp. 1371-1378 (1998) https://doi.org/10.1109/34.735811
- Isard, M., Blake A.: CONDENSATION -- conditional density propagation for visual tracking. In: Int. J. Comput. Vis., vol. 1, pp. 5-28 (1998) https://doi.org/10.1007/BF00128524
- Black, M. J., Jepson, A. D.: A probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions. In: Proc. 5th Eur. Conf. Comput. Vis., vol. 1, pp. 909-924 (1998)
- Davis, J., Shah, M.: Visual gesture recognition. In: Vis., Image Signal Process., vol. 141, pp. 101-106 (1994) https://doi.org/10.1049/ip-vis:19941058
- Hong, P., Turk M., Huang, T. S.: Gesture modeling and recognition using finite state machines. In: Proc. 4th IEEE Int. Conf. Autom. Face Gesture Recogn., Grenoble, France, pp. 410-415 (2000)
- Yeasin, M., Chaudhuri, S.: Visual understanding of dynamic hand gestures. In: Pattern Recogn., vol. 33, pp. 1805-1817, (2000) https://doi.org/10.1016/S0031-3203(99)00175-2
- Tur, A. O., & Keles, H. Y.: Evaluation of hidden Markov models using deep CNN features in isolated sign recognition. In: Multimedia Tools and Applications, vol. 80(13), pp. 19137-19155 (2021) https://doi.org/10.1007/s11042-021-10593-w
- Pigou, L., Dieleman, S., Kindermans, P.J., Schrauwen, B.: Sign language recognition using convolutional neural networks. In: Workshop at the European Conference on Computer Vision, pp. 572-578. Springer (2014)
- Nishida, N., Nakayama, H.: Multimodal Gesture Recognition Using Multi-stream Recurrent Neural Network. In: Image and Video Technology, Lecture Notes in Computer Science, pp. 682-694. Springer International Publishing, Cham (2016)
- Nunez, J. C., Cabido, R., Pantrigo, J. J., Montemayor, A. S., & Velez, J. F.: Convolutional Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand gesture recognition. Pattern Recognition, vol. 76, pp.80-94 (2018) https://doi.org/10.1016/j.patcog.2017.10.033
- Zheng, Z., Chen, Z., Hu, F., Zhu, J., Tang, Q., Liang, Y.: An Automatic Diagnosis of Arrhythmias Using a Combination of CNN and LSTM Technology. In: Electronics, vol.9(1), p.121 (2020) https://doi.org/10.3390/electronics9010121
- Fenghour, S., Chen, D., Guo, K., Li, B., & Xiao, P. Deep learning-based automated lip-reading: A survey. IEEE Access: Practical Innovations, Open Solutions, vol. 9, pp. 121184-121205 (2021)
- Trachuk, T., Vdovichena, O., Andriushchenko, M., Semenda, O., Pashkevych, M.: Branding and Advertising on Social Networks: Current Trends. In: IJCSNS International Journal of Computer Science and Network Security, vol.21 no.4, pp. 178-185 (2021)
- Jain, A., Tompson, J., Andriluka, M., Taylor, G.W., Bregler, C.: Learning human pose estimation features with convolutional networks. In: arXiv preprint arXiv:1312.7302 (2013)
- Jain, A., Tompson, J., LeCun, Y., Bregler, C. Modeep.: A deep learning framework using motion features for human pose estimation. In: Proc. Asian conference on computer vision, Springer. pp. 302-315 (2014)
- Tang, Z., Peng, X., Geng, S., Wu, L., Zhang, S., Metaxas, D.: Quantized densely connected u-nets for efficient landmark localization. In: Proc. European Conference on Computer Vision, pp. 339-354 (2018)
- Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 648-656c (2015)
- Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in neural information processing systems, pp. 1799-1807 (2014)
- Iqbal, U., Milan, A., & Gall, J.: PoseTrack: Joint Multi-person Pose Estimation and Tracking. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
- Fang, H., Xie, S., Tai, Y.W., Lu, C.: Rmpe: Regional multi-person pose estimation. In: Proc. IEEE International Conference on Computer Vision, pp. 2334-2343 (2017)
- Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V., Schiele, B.: Deepcut: Joint subset partition and labeling for multiperson pose estimation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 4929-4937 (2016)
- Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: Deepercut: A deeper, stronger, and faster multi-person pose estimation model. In: Proc. European Conference on Computer Vision, Springer. pp. 34-50 (2016)