• Title/Summary/Keyword: Hilbert's Program

Search Result 9, Processing Time 0.021 seconds

Hilbert's Program as Research Program (연구 프로그램으로서의 힐버트 계획)

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.37-58
    • /
    • 2011
  • The development of recent Mathematical Logic is mostly originated in Hilbert's Proof Theory. The purpose of the plan so called Hilbert's Program lies in the formalization of mathematics by formal axiomatic method, rescuing classical mathematics by means of verifying completeness and consistency of the formal system and solidifying the foundations of mathematics. In 1931, the completeness encounters crisis by the existence of undecidable proposition through the 1st Theorem of G?del, and the establishment of consistency faces a risk of invalidation by the 2nd Theorem. However, relative of partial realization of Hilbert's Program still exists as a fruitful research program. We have tried to bring into relief through Curry-Howard Correspondence the fact that Hilbert's program serves as source of power for the growth of mathematical constructivism today. That proof in natural deduction is in truth equivalent to computer program has allowed the formalization of mathematics to be seen in new light. In other words, Hilbert's program conforms best to the concept of algorithm, the central idea in computer science.

Wittgenstein on Hilbert's Program (비트겐슈타인과 힐베르트 프로그램)

  • Park, Jeong-Il
    • Korean Journal of Logic
    • /
    • v.15 no.1
    • /
    • pp.155-190
    • /
    • 2012
  • As far as Hilbert's Program is concerned, there seems to be important differences in the development of Wittgenstein's thoughts. Wittgenstein's main claims on this theme in his middle period writings, such as Wittgenstein and the Vienna Circle, Philosophical Remarks and Philosophical Grammar seem to be different from the later writings such as Wittgenstein's Lectures on the Foundations of Mathematics (Cambridge 1939) and Remarks on the Foundations of Mathematics. To show that differences, I will first briefly survey Hilbert's program and his philosophy of mathematics, that is to say, formalism. Next, I will illuminate in what respects Wittgenstein was influenced by and criticized Hilbert's formalism. Surprisingly enough, Wittgenstein claims in his middle period that there is neither metamathematics nor proof of consistency. But later, he withdraws his such radical claims. Furthermore, we cannot find out any evidences, I think, that he maintained his formerly claims. I will illuminate why Wittgenstein does not raise such claims any more.

  • PDF

Hilbert and Formalism (힐버트와 형식주의)

  • Choi, Won-Bae
    • Journal for History of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • In this paper I discuss if we can regard Hilbert at the time of Hilbert's program as an instrumentalist. For this I first provide some textual evidences for the instrumentalist interpretation, then examine the three recent criticisms in turn. I argue that the reading Hilbert as an instrumentalist is still tenable in spite of these criticisms.

CONVERGENCE THEOREMS OF PROXIMAL TYPE ALGORITHM FOR A CONVEX FUNCTION AND MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Aggarwal, Sajan;Uddin, Izhar;Pakkaranang, Nuttapol;Wairojjana, Nopparat;Cholamjiak, Prasit
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this paper we study the weak and strong convergence to minimizers of convex function of proximal point algorithm SP-iteration of three multivalued nonexpansive mappings in a Hilbert space.

THE CONSTRUCTION OF SOME LEVEL ARTINIAN O-SEQUENCES

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.541-548
    • /
    • 2006
  • We find a graded Artinian level O-sequence of the form $H\;:\;h_0\;h_1\;\cdots\;h_{d-1}\;h_d\cdots$ $^{(d+1-1_)-st}h_d$ < $h_{d+s}$ not having the Weak-Lefschetz property. We also introduce several algorithms for construction of some examples of non-unimodal level O-sequences using a computer program called CoCoA.

HALPERN TSENG'S EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES INVOLVING SEMISTRICTLY QUASIMONOTONE OPERATOR

  • Wairojjana, Nopparat;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.121-140
    • /
    • 2022
  • In this paper, we study the strong convergence of new methods for solving classical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-continuous operators in a real Hilbert space. Three proposed methods are based on Tseng's extragradient method and use a simple self-adaptive step size rule that is independent of the Lipschitz constant. The step size rule is built around two techniques: the monotone and the non-monotone step size rule. We establish strong convergence theorems for the proposed methods that do not require any additional projections or knowledge of an involved operator's Lipschitz constant. Finally, we present some numerical experiments that demonstrate the efficiency and advantages of the proposed methods.

Mathematical truth and Provability (수학적 참과 증명가능성)

  • Jeong, Gye-Seop
    • Korean Journal of Logic
    • /
    • v.8 no.2
    • /
    • pp.3-32
    • /
    • 2005
  • Hilbert's rational ambition to establish consistency in Number theory and mathematics in general was frustrated by the fact that the statement itself claiming consistency is undecidable within its formal system by $G\ddot{o}del's$ second theorem. Hilbert's optimism that a mathematician should not say "Ignorabimus" ("We don't know") in any mathematical problem also collapses, due to the presence of a undecidable statement that is neither provable nor refutable. The failure of his program receives more shock, because his system excludes any ambiguity and is based on only mechanical operations concerning signs and strings of signs. Above all, $G\ddot{o}del's$ theorem demonstrates the limits of formalization. Now, the notion of provability in the dimension of syntax comes to have priority over that of semantic truth in mathematics. In spite of his failure, the notion of algorithm(mechanical processe) made a direct contribution to the emergence of programming languages. Consequently, we believe that his program is failure, but a great one.

  • PDF

G$\ddot{o}$del의 부완전성정리와 수학적 진리

  • 김용국;김빙남
    • Journal for History of Mathematics
    • /
    • v.1 no.1
    • /
    • pp.71-75
    • /
    • 1984
  • Whether the complete Hilbert program could be carried out was rendered very doubtful by results due to Godel. These results may be roughly characterized as a demonstration that, in any system broad enough to contain all the formulas of a formalized elementary number theory, there exist formulas that neither can be proved nor disproved within the system. In this paper, Godel's incompleteness theorem is explained roughly moreover formul system and machines being refered, related to his theory.

  • PDF

ON STRONG CONVERGENCE THEOREMS FOR A VISCOSITY-TYPE TSENG'S EXTRAGRADIENT METHODS SOLVING QUASIMONOTONE VARIATIONAL INEQUALITIES

  • Wairojjana, Nopparat;Pholasa, Nattawut;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.381-403
    • /
    • 2022
  • The main goal of this research is to solve variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces numerically. The main advantage of these iterative schemes is the ease with which step size rules can be designed based on an operator explanation rather than the Lipschitz constant or another line search method. The proposed iterative schemes use a monotone and non-monotone step size strategy based on mapping (operator) knowledge as a replacement for the Lipschitz constant or another line search method. The strong convergences have been demonstrated to correspond well to the proposed methods and to settle certain control specification conditions. Finally, we propose some numerical experiments to assess the effectiveness and influence of iterative methods.