G$\ddot{o}$del의 부완전성정리와 수학적 진리

  • Published : 1984.09.01

Abstract

Whether the complete Hilbert program could be carried out was rendered very doubtful by results due to Godel. These results may be roughly characterized as a demonstration that, in any system broad enough to contain all the formulas of a formalized elementary number theory, there exist formulas that neither can be proved nor disproved within the system. In this paper, Godel's incompleteness theorem is explained roughly moreover formul system and machines being refered, related to his theory.

Keywords