• Title/Summary/Keyword: High-rise Structures

Search Result 754, Processing Time 0.024 seconds

A Comparative Analysis of Terrorism Threat Level of Domestic Tall Buildings and General Buildings through Rapid Visual Screening (Rapid Visual Screening통한 건물 높이별 테러위험도 비교 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.89-99
    • /
    • 2011
  • As the scope of the target of terrorism is recently extending, the danger of domestic terroristic attacks is increasing constantly, and the form of terrorism is changing from hard targets such as significant facilities of the country into soft target of multi-complex buildings such as skyscrapers. Accordingly this study analyzes the terrorism threat level on skyscrapers by comparing the assessment results of the terrorism threat level on skyscrapers and high-rise buildings with the assessment results of the terrorism threat level on low-rise buildings through fema 455 - Rapid Visual Screening. As a result, skyscrapers and high-rise buildings are relatively higher threat rating than consequences and vulnerability rating. This is caused by the fact that the terrorism threat level on skyscrapers is high due to their residents and their national or regional symbolism and visibility

Vibration Characteristics and the Serviceability Evaluation of High-rise Building during Strong Wind (강풍시 고층건물의 진동특성 및 사용성 평가)

  • Yoon, Sung-Won;Kim, Do-Hyun;Jeong, Sug-Chang;Kim, Dong-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • After measuring wind induced response for a high-rise steel building, the damping ratio and natural frequency were analyzed in this paper. In order to examine amplitude dependence, random decrement method was used. Two methods were analyzed by comparing dynamic properties from random decrement method and half powered-band width method. In addition, through serviceability evaluation during strong wind, compatibility of two methods to Japanese guidelines for the evaluation of habitability to building vibration and national building code of Canada was considered. The amplitude dependence of the damping ratio by RD method was shown and the amplitude dependence of the natural frequency was relatively very small in an aspect of engineering sense. Moreover, the measured building was satisfied with serviceability and Japanese guideline is stricter than NBCC code.

  • PDF

Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device (면진장치 특성 변화에 따른 중간층 면진시스템의 지진응답 평가)

  • Kim, Hyun-Su;Kim, Su-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of $15^{th}$ floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

Optimum position for outriggers of different materials in a high- rise building

  • Nikhil Y. Mithbhakare;Popat D. Kumbhar
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • High-rise structures are considered as symbols of economic power and leadership. Developing countries like India are also emerging as centers for new high-rise buildings (HRB). As the land is expensive and scarce everywhere, construction of tall buildings becomes the best solution to resolve the problem. But, as building's height increases, its stiffness reduces making it more susceptible to vibrations due to wind and earthquake forces. Several systems are available to control vibrations or deflections; however, outrigger systems are considered to be the most effective systems in improving lateral stiffness and overall stability of HRB. In this paper, a 42-storey RCC HRB is analyzed to determine the optimum position of outriggers of different materials. The linear static analysis of the building is performed with and without the provision of virtual outriggers of reinforced cement concrete (RCC) and pre-stressed concrete (PSC) at different storey levels by response spectrum method using finite element based Extended3D Analysis of building System (ETABS) software for determining responses viz. storey displacement, base shear and storey drift for individual models. The maximum allowable limit and percentage variations in earthquake responses are verified using the guidelines of Indian seismic codes. Results indicate that the outriggers contribute in significantly reducing the storey displacement and storey drift up to 28% and 20% respectively. Also, it is observed that the PSC outriggers are found to be more efficient over RCC outriggers. The optimum location of both types of outriggers is found to be at the mid height of building.

A Study on the Characteristics of dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model (등가 모델을 이용한 대공간 구조물의 동적 거동 특성에 관한 연구)

  • 한상을;이상주;김민식;이정현
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.3-10
    • /
    • 2004
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability. For those purposes, recently, the performance design concept to increase the degree of absorbed energy level of structures has been proposed. One practical way of the performance design in the spatial structures is to apply the isolation system to boundary parts of roof system and sub-structure to obtain the target performance. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify the analytical processes and to investigate the dynamic behavior of roof system according to the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

  • PDF

Comparison of various k-ε models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment -

  • Mochida, A.;Tominaga, Y.;Murakami, S.;Yoshie, R.;Ishihara, T.;Ooka, R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.227-244
    • /
    • 2002
  • Recently, the prediction of wind environment around a building using Computational Fluid Dynamics (CFD) technique comes to be carried out at the practical design stage. However, there have been very few studies which examined the accuracy of CFD prediction of flow around a high-rise building including the velocity distribution at pedestrian level. The working group for CFD prediction of wind environment around building, which consists of researchers from several universities and private companies, was organized in the Architectural Institute of Japan (AIJ) considering such a background. At the first stage of the project, the working group planned to carry out the cross comparison of CFD results of flow around a high rise building by various numerical methods, in order to clarify the major factors which affect prediction accuracy. This paper presents the results of this comparison.

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.

A Study on the Typological Characteristics of the Super High-Rise Housings in Hong Kong (홍콩 초고층 주거의 평면적 특징에 관한 연구)

  • Kim, Sung-Hwa;Lee, Jae-Hoon
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2004.11a
    • /
    • pp.43-48
    • /
    • 2004
  • The purpose of this study is to analyze the typological characteristics of super high-rise housings in Hong Kong. The results are as follows; 1) The Plan types of the residential building in Hong Kong are mostly tower types and they show lots of curves on the external resident blocks so each resident families can face maximum open air. 2)Household arrangements or resident families form are shown as symmetrical and systematic type of structures that centers around the core. 3)The core types are mostly central core types and a portion of central core is planned to place void and alight garden for improving the lighting and ventilating problems. 4)If we review our room arrangements, they are arranged from entrance kitchen, livingroom bedroom to bathroom to the end. Livingrooms and dinning rooms are normally formed together. 5)If external resident blocks are facing the open air, one of the surface is on view axis, kitchen or bathroom are symmetrically located on the other side which faces the units for the purpose of ventilating.

  • PDF

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.