• Title/Summary/Keyword: High-frequency radio communication

Search Result 251, Processing Time 0.022 seconds

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.

A study on Conditions of Frequency Coordination for High Speed Radio Access Network in domestic 5GHz Band (국내 5GHz대역 초고속 무선 접속망의 공유조건 연구)

  • 박진아;박승근;박덕규;오용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.751-758
    • /
    • 2000
  • In this paper, we discuss frequency allocation and sharing for high speed radio access network in domestic 5GHz the band. In order to evaluate the possibility of frequency sharing between meteorological radar and high speed radio access network, we analyses radio interference of meteorological radar by means of minimum coupling loss method and Monte Carlo simulation. And simulations show that it is necessary to use DFS(Dynamic Frequency Selection) scheme for frequency sharing between meteorological radar and high speed radio access network.

  • PDF

Frequency Adaptive High Efficiency Class-E Amplifier in RFID System (RFID 시스템에 사용되는 주파수 적응형 고효율 Class-E 증폭기)

  • Kwan, Sang-Gun;Son, Gang-Ho;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.351-357
    • /
    • 2010
  • This paper proposes the adaptive class-E power amplifier with maintaining high power added efficiency (PAE) to apply RFID and wireless communication system. This switch mode amplifier is used a microprocessor to control a resonator circuits and to maintain high efficiency in case of input frequency variation. To validate the adaptive amplifier operation, which is a 450MHz operating frequency and a 100MHz bandwidth, the class E amplifier is implemented. As a result, the adaptive amplifier is maintained above 60% efficiency in frequency range and has a 74.8% maximum efficiency.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.

Research on the Development of High Radio-Frequency Electrode Probe for Under-Water Treatment (수중 치료용 고주파 전극 프로브 개발에 관한 연구)

  • Tea-Ho Yoon;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1337-1344
    • /
    • 2023
  • We aim to find out the effectiveness of performance evaluation to ensure safety of performance through development of high-frequency electrode probes, evaluation test protocol and evaluation simulator that is essential to ensure safety in performance evaluation and reliability evaluation of high-frequency electrode probes for underwater therapy used with high-frequency electrosurgical equipment.

Next-Generation Intelligent Radio Monitoring System (차세대 지능형 전파감시 시스템)

  • Yim, Hyun-Seok;Moon, Jin-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.846-851
    • /
    • 2008
  • With rapid development of communication industry, the kinds of communication service vary. According to the increasing use of radio waves, the intelligent and effective radio monitoring system needs to be developed, which is replaced for previous radio monitoring system. Next-generation intelligent radio monitoring system based on ITU-R, Rule of wireless facilities, and Radio Waves Act is used, and which can accurately and effectively function as effective radio monitoring system through spectrum analysis of channel power, frequency deviation, offset, and an occupied frequency bandwidth(99% or x-dB), about the analog and digital signal in On-Air of V/UHF bandwidth. Main function of the system has an radio quality measurement, unwanted electromagnetic signals (spurious, harmonic) measurement, high-speed spectrum measurement, frequency usage efficiency investigation, illegal radio exploration, working monitoring, In this paper, we proposes radio quality measurement, high-speed spectrum measurement of next-generation intelligent radio monitoring system.

The Design and Performance Analysis of Synchronization on Frequency Hopping Network Communication System (주파수도약 네트워크 통신 시스템의 구조설계 및 동기성능 분석)

  • Lim, So-Jin;Bae, Suk-Neung;Han, Sung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.819-827
    • /
    • 2013
  • Compared to legacy frequency hopping communications, future radio communications are required the secure and high data rate, ad-hoc network communication. In this paper, we have designed the network communication structure on the frequency hopping mode, and analyzed the performance of synchronization on the frequency hopping network radio systems. The design results are shown the initial sync. phase of approximately 9 hops and the traffic packet phase of approximately 30 hops. Also, we have simulated the performance on the communication conditions which are carrier bandwidth of 50kHz, user data rate of 64kbps and OQPSK modulation scheme in AWGN. In the simulation, we analyzed the correlation and the performance of synchronization success. The result of simulation show 99% probability for synchronization success at $E_b/N_o$ -4dB.

A Single-Feeding Port HF-UHF Dual-Band RFID Tag Antenna

  • Ha-Van, Nam;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2017
  • In this paper, a dual-band high frequency (HF) and ultra-high frequency (UHF) radio-frequency identification (RFID) tag antenna is presented that operates in the 13.56 MHz band as well as in the 920 MHz band. A spiral coil along the edges of the antenna substrate is designed to handle the HF band, and a novel meander open complementary split ring resonator (MOCSRR) dipole antenna is utilized to generate the UHF band. The dual-band antenna is supported by a single-feeding port for mono-chip RFID applications. The antenna is fabricated using an FR4 substrate to verify theoretical and simulation designs, and it has compact dimensions of $80mm{\times}40mm{\times}0.8mm$. The proposed antenna also has an omnidirectional characteristic with a gain of approximately 1 dBi.

VALIDITY REGIONS OF THEORETICAL MODELS FOR ESTIMATING THE RCS OF LOSSY DIELECTRIC CYLINDERS

  • Hong, Jin-Young;Kwon, Soon-Gu;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.369-373
    • /
    • 2007
  • This paper presents an examination of theoretical scattering models for radar cross sections (RCS) of lossy dielectric cylinders, such as exact analytical solution, low frequency approximation (Rayleigh) and high frequency approximation (Physical Optics). The validity regions of the PO and Rayleigh models are closely examined with exact solution in terms of various wavelengths and dielectric constants of a circular cylinder. And also this paper examines the PO and Rayleigh models for back and forward scatter RCS of a cylinder at various incidence angles and polarizations. It was found that the PO and Rayleigh model have their validity regions for estimating the RCS of a circular cylinder.

  • PDF