Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00007, Magnetic Field Communication Technology Based on 10pT Class Magnetic Field for Middle and Long Range).
References
- C. J. Berglund, L. R. Hunter, D. Krause Jr., E. O. Prigge, M. S. Ronfeldt, and S. K. Lamoreaux, "New limits on local Lorentz invariance from Hg and Cs magnetometers," Phys. Rev. Lett. 75, 1879-1882 (1995). https://doi.org/10.1103/PhysRevLett.75.1879
- D. Bear, R. E. Stoner, R. L. Walsworth, V. Alan Kostelecky, and C. D. Lane, "Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser," Phys. Rev. Lett. 89, 5038-5041 (2000).
- S. Groeger, A. S. Pazgalev, and A. Weis, "Comparison of discharge lamp and laser pumped cesium magnetometers," Appl. Phys. B 80, 645-654 (2005). https://doi.org/10.1007/s00340-005-1773-x
- M. N. Nabighian, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J.W. Peirce, J. D. Phillips, and M. E. Ruder, "The historical development of the magnetic method in exploration," Geophysics 70, 1ND-Z113 (2005). https://doi.org/10.1190/1.2122415
- V. Mathe, F. Leveque, P.-E. Mathe, C. Chevallier, and Y. Pons, "Soil anomaly mapping using a cesium magnetometer: limits in the low magnetic amplitude case," J. Appl. Geophys. 58, 202-217 (2006). https://doi.org/10.1016/j.jappgeo.2005.06.004
- S. K. Lee, M. Mossle, W. Myers, N. Kelso, A. H. Trabesinger, A. Pines, and J. Clarke, "SQUID-detected MRI at 132μT with T1-weighted contrast established at 10μT-300 mT," Magn. Reason. Med. 53, 9-14 (2005). https://doi.org/10.1002/mrm.20316
- S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, "Measurements of T1-relaxation in ex vivo prostate tissue at 132μT," Magn. Reason. Med. 67, 1138-1145 (2012). https://doi.org/10.1002/mrm.24177
- H. J. Lee, S.-J. Lee, J. H. Shim, H. S. Moon, and K. Kim, "Insitu Overhauser-enhanced nuclear magnetic resonance at less than 1μT using an atomic magnetometer," J. Magn. Reason. 300, 149-152 (2019). https://doi.org/10.1016/j.jmr.2019.02.001
- I. Hilschenz, S. Oh, S.-J. Lee, K. K. Yu, S.-M. Hwang, K. Kim, and J. H. Shim, "Dynamic nuclear polarization of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI," J. Magn. Reason. 305, 138-145 (2019). https://doi.org/10.1016/j.jmr.2019.06.013
- S.-J. Lee, K. Jeong, J. H. Shim, H. J. Lee, S. Min, H. Chae, S. K. Namgoong, and K. Kim, "SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange," Sci. Rep. 9, 12422 (2019). https://doi.org/10.1038/s41598-019-48827-5
- J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, NY, USA. 1975), Chapter 5.
- D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley Pub., MA, USA. 1989), Chapter 8.
- C. E. Shannon, "Communication in the Presence of Noise," Proc. IRE 37, 10-21 (1949). https://doi.org/10.1109/JRPROC.1949.232969
- I. F. Akyildiz, P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Commun. Mag. 53, 42-48 (2015).
- M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, "NIOSH-sponsored research in through-the-earth communications for mines: a status report," IEEE Trans. Ind. Appl. 48, 1700-1707 (2012). https://doi.org/10.1109/TIA.2012.2209853
- S. Tumanski, "Induction coil sensors-A review," Meas. Sci. Technol. 18, R31 (2007). https://doi.org/10.1088/0957-0233/18/3/R01
- I. M. Savukov and M. V. Romalis, "NMR detection with an atomic magnetometer," Phys. Rev. Lett. 94, 123001 (2005). https://doi.org/10.1103/PhysRevLett.94.123001
- V. Gerginov, F. C. S. da Silva, and D. Howe, "Prospects for magnetic field communications and location using quantum sensors," Rev. Sci. Inst. 88, 125005 (2017). https://doi.org/10.1063/1.5003821
- I. Savukov, T. Karaulanov, and M. G. Boshier, "Ultra-sensitive high-density Rb-87 radio-frequency magnetometer," Appl. Phys. Lett. 104, 023504 (2014). https://doi.org/10.1063/1.4861657
- D. A. Keder, D. W. Prescott, A. W. Conovaloff, and K. L. Sauer, "An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity," AIP Adv. 4, 127159 (2014). https://doi.org/10.1063/1.4905449
- C. Deans, L. Marmugi, and F. Renzoni, "Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments," Rev. Sci. Inst. 89, 083111 (2018). https://doi.org/10.1063/1.5026769
- S. Appelt, A. B.-A. Baranga, A. R. Young, and W. Happer, "Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells," Phys. Rev. A 59, 2078 (1999). https://doi.org/10.1103/physreva.59.2078