DOI QR코드

DOI QR Code

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute) ;
  • Yu, Ye Jin (Department of Physics, Pusan National University) ;
  • Kim, Jang-Yeol (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute) ;
  • Lee, Jaewoo (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute) ;
  • Moon, Han Seb (Department of Physics, Pusan National University) ;
  • Cho, In-Kui (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2020.11.26
  • Accepted : 2021.03.12
  • Published : 2021.06.25

Abstract

We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00007, Magnetic Field Communication Technology Based on 10pT Class Magnetic Field for Middle and Long Range).

References

  1. C. J. Berglund, L. R. Hunter, D. Krause Jr., E. O. Prigge, M. S. Ronfeldt, and S. K. Lamoreaux, "New limits on local Lorentz invariance from Hg and Cs magnetometers," Phys. Rev. Lett. 75, 1879-1882 (1995). https://doi.org/10.1103/PhysRevLett.75.1879
  2. D. Bear, R. E. Stoner, R. L. Walsworth, V. Alan Kostelecky, and C. D. Lane, "Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser," Phys. Rev. Lett. 89, 5038-5041 (2000).
  3. S. Groeger, A. S. Pazgalev, and A. Weis, "Comparison of discharge lamp and laser pumped cesium magnetometers," Appl. Phys. B 80, 645-654 (2005). https://doi.org/10.1007/s00340-005-1773-x
  4. M. N. Nabighian, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J.W. Peirce, J. D. Phillips, and M. E. Ruder, "The historical development of the magnetic method in exploration," Geophysics 70, 1ND-Z113 (2005). https://doi.org/10.1190/1.2122415
  5. V. Mathe, F. Leveque, P.-E. Mathe, C. Chevallier, and Y. Pons, "Soil anomaly mapping using a cesium magnetometer: limits in the low magnetic amplitude case," J. Appl. Geophys. 58, 202-217 (2006). https://doi.org/10.1016/j.jappgeo.2005.06.004
  6. S. K. Lee, M. Mossle, W. Myers, N. Kelso, A. H. Trabesinger, A. Pines, and J. Clarke, "SQUID-detected MRI at 132μT with T1-weighted contrast established at 10μT-300 mT," Magn. Reason. Med. 53, 9-14 (2005). https://doi.org/10.1002/mrm.20316
  7. S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, "Measurements of T1-relaxation in ex vivo prostate tissue at 132μT," Magn. Reason. Med. 67, 1138-1145 (2012). https://doi.org/10.1002/mrm.24177
  8. H. J. Lee, S.-J. Lee, J. H. Shim, H. S. Moon, and K. Kim, "Insitu Overhauser-enhanced nuclear magnetic resonance at less than 1μT using an atomic magnetometer," J. Magn. Reason. 300, 149-152 (2019). https://doi.org/10.1016/j.jmr.2019.02.001
  9. I. Hilschenz, S. Oh, S.-J. Lee, K. K. Yu, S.-M. Hwang, K. Kim, and J. H. Shim, "Dynamic nuclear polarization of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI," J. Magn. Reason. 305, 138-145 (2019). https://doi.org/10.1016/j.jmr.2019.06.013
  10. S.-J. Lee, K. Jeong, J. H. Shim, H. J. Lee, S. Min, H. Chae, S. K. Namgoong, and K. Kim, "SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange," Sci. Rep. 9, 12422 (2019). https://doi.org/10.1038/s41598-019-48827-5
  11. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, NY, USA. 1975), Chapter 5.
  12. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley Pub., MA, USA. 1989), Chapter 8.
  13. C. E. Shannon, "Communication in the Presence of Noise," Proc. IRE 37, 10-21 (1949). https://doi.org/10.1109/JRPROC.1949.232969
  14. I. F. Akyildiz, P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Commun. Mag. 53, 42-48 (2015).
  15. M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, "NIOSH-sponsored research in through-the-earth communications for mines: a status report," IEEE Trans. Ind. Appl. 48, 1700-1707 (2012). https://doi.org/10.1109/TIA.2012.2209853
  16. S. Tumanski, "Induction coil sensors-A review," Meas. Sci. Technol. 18, R31 (2007). https://doi.org/10.1088/0957-0233/18/3/R01
  17. I. M. Savukov and M. V. Romalis, "NMR detection with an atomic magnetometer," Phys. Rev. Lett. 94, 123001 (2005). https://doi.org/10.1103/PhysRevLett.94.123001
  18. V. Gerginov, F. C. S. da Silva, and D. Howe, "Prospects for magnetic field communications and location using quantum sensors," Rev. Sci. Inst. 88, 125005 (2017). https://doi.org/10.1063/1.5003821
  19. I. Savukov, T. Karaulanov, and M. G. Boshier, "Ultra-sensitive high-density Rb-87 radio-frequency magnetometer," Appl. Phys. Lett. 104, 023504 (2014). https://doi.org/10.1063/1.4861657
  20. D. A. Keder, D. W. Prescott, A. W. Conovaloff, and K. L. Sauer, "An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity," AIP Adv. 4, 127159 (2014). https://doi.org/10.1063/1.4905449
  21. C. Deans, L. Marmugi, and F. Renzoni, "Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments," Rev. Sci. Inst. 89, 083111 (2018). https://doi.org/10.1063/1.5026769
  22. S. Appelt, A. B.-A. Baranga, A. R. Young, and W. Happer, "Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells," Phys. Rev. A 59, 2078 (1999). https://doi.org/10.1103/physreva.59.2078