• Title/Summary/Keyword: High-ductility

Search Result 969, Processing Time 0.029 seconds

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Evaluation of Mechanical Performance of a Segment Lining coated by a Sprayed Waterproofing Membrane by a Full-scale Loading Test (실물 재하실험에 의한 뿜칠 방수 멤브레인이 타설된 세그먼트 라이닝의 역학적 성능 평가)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Park, Byungkwan;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.97-110
    • /
    • 2018
  • The application of sprayed waterproofing membrane with high adhesion and ductility is considered to be promising as a measure for repair and reinforcement of a tunnel structure. Therefore, a powder-type and one-component membrane prototype with high tensile and bond strengths was made in this study. Then, its reinforcement effect on a shield segment was evaluated by carrying out a series of full-scale loading tests of segment specimens on which the membrane was sprayed. From the tests, it was confirmed that the initial cracking loads increased by approximately 34% due to cracking retardation by membrane coating. Even though the increase of failure loads were not so high as cracking loads, the strain-softening behaviors were observed from specimens coated by the membrane. Therefore, it is expected that the membrane coated on the inner surface of a lining might be effective in preventing its brittle failure.

Behavior of Wide Beam-Column Interior Joint with Slab (횡력을 받는 넓은 보-기둥 내부 접합부의 거동 평가)

  • Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.433-449
    • /
    • 2012
  • An experimental investigation was conducted to study the behavior of RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were the ratio of column-to-beam flexural capacity ($M_r={\Sigma}M_c/{\Sigma}M_b$ ; 0.77~2.26), ratio of the column-to-beam width (b/H ; 1.54, 1.67). Test results are shown that (1) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column. (2) the presence of a slab have an effect on the performance of the wide beam-high strength concrete column interior joints(type 2). therefore in the design of the wide beam-high strength concrete column interior joints(type 2), the width of slab effective as a T beam flange should be considered. It was show that the case of the ratio of column-to-beam flexural capacity is more than 2.0, the effective width of slab are 2 times of an effective depth of wide beam, however if the ratio of column-to-beam flexural capacity is 1.4~2.0, the effective width of slab are not able to be considered.

Mechanical Properties of Wood Flour Polypropylene Composites: Effect of Cycled Temperature Change (Wood Flour 폴리프로필렌 복합재료의 기계적 특성: 반복적 온도 변화의 영향)

  • Lee, S.Y.;Chun, S.J.;Doh, G.H.;Park, S.B.;Choi, S.I.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • The effect of cycled temperature change on the mechanical properties of wood flour(50 wt.% and 70 wt.%) polypropylene WPC(Wood Plastic Composites) was investigated in this study. Flexural modulus and flexural strength of the WPC showed a decrease due to the degradation of interfacial adhesion between polymer matrix and wood flour by the freeze-thaw test regardless of the cycled number. At the higher loading level of wood flour, the reduction of the flexural modulus was remarkable. After the cycled heat-freeze test, it was found that the flexural modulus and flexural strength of the WPC were lower at the high temperature ($60^{\circ}C$) and higher at the low temperature ($-20^{\circ}C$). At the low temperature ($-20^{\circ}C$) which is below glass transition temperature of polypropylene ($-10^{\circ}C$), WPC is in a glassy state which brings about the high stiffness and strength. At the high temperature ($60^{\circ}C$), the flexural modulus and flexural strength of the WPC with 50 wt.% wood flour were lower because of the increase of polymer ductility.

Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites (폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화)

  • Choi, Ki-Woon;Lee, Han-Sup;Kang, Bok-Choon;Yang, Hoi-Chang
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.294-299
    • /
    • 2010
  • Clay-loaded polypropylene (PP) nanocomposites were fabricated via melt-compounding of two molecular weight ($M_w$) PPs (140 and 410 kg/mol) and octadecylammine-treated clay (C18MMT), with the assistance of maleic anhydride-grafted PP(PP-MAH), respectively, at $170^{\circ}C$ and $190^{\circ}C$. At both melt-compounding temperatures, the low-$M_w$ PP tends to easily diffuse into silicate layers, especially in the presence of the mobile PP-MAH, resulting in a marked increase in silicate layer spacing (above 58 $\AA$), when compared to 27 $\AA$ in the high-$M_w$ PP-based system. Due to relatively lower melt-viscosity of the low-$M_w$ PP-based system, however, there existed quasi-stacked clay aggregates with a thickness of 60~80 nm, while the high-$M_w$ PP-based nanocomposites showed relatively homogeneous dispersion of clays. The different morphologies are mainly related to changes in the viscoelastic properties of PPs, dependent on the processing temperature and their $M_{w}s$. The slight differences in nanocomposites induce discernible crystallization and mechanical behaviors. High-$M_w$ PP-based nanocomposites containing 1~3 wt% C18MMT showed improvement in both tensile strength and modulus, while maintaining the inherent ductility of pure PP.

Fabrication and Evaluation of High Mg-content ECO-Almag6~9 Extruded Products by using Oxidation-resistant Mg Mother Alloy (내산화성 Mg 모합금을 이용한 고(高) Mg 함유 ECO-Almag6~9 합금 압출재의 제조 및 특성평가)

  • Kim, Bong-Hwan;Yoon, Young-Ok;Kim, Shae-Kwang
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.252-259
    • /
    • 2021
  • The magnesium is one of the important alloying elements in the conventional aluminum alloys. The addition of magnesium to aluminum is well known to increase the mechanical strength of the aluminum without the trade-off of the decreased elongation. However, the content of magnesium in aluminum alloys has been limited to be lower than about 5wt.% because of the high oxidation tendency of magnesium element during the manufacturing processes such as casting, hot-forming and post heat-treatments, which can deteriorate the quality and properties of the final products. In this study, new 'ECO-Almag6~9' (containing 6~9wt%Mg) alloys were investigated to be made of the ECO-Mg master alloy, which has been invented to reduce the oxidation tendency of itself. It was successfully demonstrated that ECO-Almag6~9 alloys can be fabricated through the mass-production facilities of DC casting and extrusion routes without the problems of magnesium oxidation. In addition, it was confirmed that the strength and ductility were simultaneously improved due to the addition of high magnesium contents.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam (층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2012
  • The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete