DOI QR코드

DOI QR Code

Fabrication and Evaluation of High Mg-content ECO-Almag6~9 Extruded Products by using Oxidation-resistant Mg Mother Alloy

내산화성 Mg 모합금을 이용한 고(高) Mg 함유 ECO-Almag6~9 합금 압출재의 제조 및 특성평가

  • Received : 2021.01.31
  • Accepted : 2021.03.05
  • Published : 2021.06.30

Abstract

The magnesium is one of the important alloying elements in the conventional aluminum alloys. The addition of magnesium to aluminum is well known to increase the mechanical strength of the aluminum without the trade-off of the decreased elongation. However, the content of magnesium in aluminum alloys has been limited to be lower than about 5wt.% because of the high oxidation tendency of magnesium element during the manufacturing processes such as casting, hot-forming and post heat-treatments, which can deteriorate the quality and properties of the final products. In this study, new 'ECO-Almag6~9' (containing 6~9wt%Mg) alloys were investigated to be made of the ECO-Mg master alloy, which has been invented to reduce the oxidation tendency of itself. It was successfully demonstrated that ECO-Almag6~9 alloys can be fabricated through the mass-production facilities of DC casting and extrusion routes without the problems of magnesium oxidation. In addition, it was confirmed that the strength and ductility were simultaneously improved due to the addition of high magnesium contents.

산업용으로 활용되는 많은 알루미늄 합금에 마그네슘 성분이 포함되어 있다. 이들 알루미늄 합금에 첨가된 마그네슘 원소는 알루미늄의 강도를 향상시키는 역할을 하지만, 제조 과정 중 산화 경향이 크기 때문에 제품의 품질과 특성을 저해하는 원인이 된다. 마그네슘이 주요 합금원소인 5천계 알루미늄 전신재 합금의 경우, 높은 산화성으로 인하여 마그네슘 함량은 약 5wt% 이내에서만 활용된다. 본 연구에서는 산화 경향이 억제된 것으로 알려진 ECO-Mg 모합금을 이용하여 5wt% 이상의 높은 마그네슘 함량을 포함하는 새로운 합금, ECO-Amag6~9 (6~9wt%Mg 함유) 합금을 제조하고 그 특성을 평가하였다. ECO-Almag6~9 합금은 높은 Mg 함량에도 깨끗한 용탕 품질이 확보되어 양산용 DC 주조기를 이용한 빌렛 제조 및 압출이 가능하였다. 또한 높은 Mg 함량으로 인해기존 산업용 5xxx계 합금에 비해 높은 강도와 연성을 보여 산업적 활용성이 높을 것으로 기대된다.

Keywords

Acknowledgement

본 연구를 위해 양산용 설비를 지원해주신 (주)NICE엘엠에스, 제품 개발에 협력해주신 (주)대흥알앤티, IMN Skawina 연구소, Granges Konin에 감사드립니다.

References

  1. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths (1976) 311-317.
  2. J. E. Hatch, Aluminum: Properties and Physical metallurgy, ASM (1984) 212.
  3. A. K. Vasudevan and R. D. Doherty, Aluminum Alloys - Contemporary Research and Applications, Academic Press Inc., (1989) 16-17.
  4. G. R. Arthur, High strength aluminum-magnesium alloys: thermomechanical processing, microstructures and tensile mechanical properties, Naval postgraduate school, Thesis (1979).
  5. K. Jyothi/Novelis Inc., High strength 5xxx Aluminum Alloys and Methods of Making The Same, WO 2016/196921 Al (2016).
  6. Kim SK, Lee JK, Yoon YO and Jo HH, J. Mater. Proc. Tech., 187-188 (2007) 757-760. https://doi.org/10.1016/j.jmatprotec.2006.11.172
  7. Lee TW, Park HW, Lim HK, Kim SK and Lim SH, J. Alloys and Comp., 714 (2017) 397. https://doi.org/10.1016/j.jallcom.2017.04.262
  8. Jung LH, Lee JK and Kim SK, Metall. Mater. Trans. B, 48 (2017) 1073. https://doi.org/10.1007/s11663-016-0875-7
  9. J. Gubicza, N. Q. Chinh, Z. Horita and T. G. Langdon, Mater Sci and Eng A, 387-389 (2004) 55. https://doi.org/10.1016/j.msea.2004.03.076
  10. J. P. Lin, T. C. Lei and X. Y. An, Scripta Metall, 26(12) (1992) 1869. https://doi.org/10.1016/0956-716X(92)90050-O
  11. Lee BH, Kim SH, Park JH, Kim HW and Lee JC, Mater Sci and Eng A, 657 (2016) 115. https://doi.org/10.1016/j.msea.2016.01.089
  12. E. L. Huskins, B. Cao and K. T. Ramesh, Mater Sci and Eng A, 527 (2010) 1292. https://doi.org/10.1016/j.msea.2009.11.056
  13. S. X. Li and G. R. Cui, J Applied Phy, 101 (2007) 083525. https://doi.org/10.1063/1.2720184
  14. M. Zha, X. T. Meng, H. M. Zhang, X. H. Zhang, H. L. Jia, Y. J. Li, J. Y. Zhang, H. Y. Wang and Q. C. Jiang, J. Alloys and comp., 728 (2017) 872. https://doi.org/10.1016/j.jallcom.2017.09.017
  15. O. Noguchi, Furukawa-Sky Review 3 (2007) 1.