Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites

폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화

  • Choi, Ki-Woon (Department of Advanced Fiber Engineering, Inha University) ;
  • Lee, Han-Sup (Department of Advanced Fiber Engineering, Inha University) ;
  • Kang, Bok-Choon (Department of Advanced Fiber Engineering, Inha University) ;
  • Yang, Hoi-Chang (Department of Advanced Fiber Engineering, Inha University)
  • 최기운 (인하대학교 나노시스템공학부 섬유신소재공학과) ;
  • 이한섭 (인하대학교 나노시스템공학부 섬유신소재공학과) ;
  • 강복춘 (인하대학교 나노시스템공학부 섬유신소재공학과) ;
  • 양회창 (인하대학교 나노시스템공학부 섬유신소재공학과)
  • Received : 2009.12.21
  • Accepted : 2010.02.27
  • Published : 2010.07.25

Abstract

Clay-loaded polypropylene (PP) nanocomposites were fabricated via melt-compounding of two molecular weight ($M_w$) PPs (140 and 410 kg/mol) and octadecylammine-treated clay (C18MMT), with the assistance of maleic anhydride-grafted PP(PP-MAH), respectively, at $170^{\circ}C$ and $190^{\circ}C$. At both melt-compounding temperatures, the low-$M_w$ PP tends to easily diffuse into silicate layers, especially in the presence of the mobile PP-MAH, resulting in a marked increase in silicate layer spacing (above 58 $\AA$), when compared to 27 $\AA$ in the high-$M_w$ PP-based system. Due to relatively lower melt-viscosity of the low-$M_w$ PP-based system, however, there existed quasi-stacked clay aggregates with a thickness of 60~80 nm, while the high-$M_w$ PP-based nanocomposites showed relatively homogeneous dispersion of clays. The different morphologies are mainly related to changes in the viscoelastic properties of PPs, dependent on the processing temperature and their $M_{w}s$. The slight differences in nanocomposites induce discernible crystallization and mechanical behaviors. High-$M_w$ PP-based nanocomposites containing 1~3 wt% C18MMT showed improvement in both tensile strength and modulus, while maintaining the inherent ductility of pure PP.

아미노실란 처리된 점토를 제조하여, 이를 분자량이 서로 다른 폴리프로필렌(140 kg/mol과 410 kg/mol) 과 상용화제인 무수말레인산 그래프트 폴리프로필렌(50 kg/mol)과 함께 $170^{\circ}C$$190^{\circ}C$에서 용융혼합법으로 각각의 폴리프로필렌/점토 나노복합체를 제조하였다. 무수말레인산 그래프트 폴리프로필렌과 용융혼합과정에서 낮은 분자량의 폴리프로필렌은 점토 층 사이로 쉽게 침투하여 층간 거리를 58 $\AA$ 이상으로 증가시키지만, 첨가된 점토는 60~80 nm 두께의 응집체로 나노복합체 내에 분산상을 이룬다. 이와 달리 높은 분자량의 폴리프로필렌 기반 나노복합체에서는 점토는 27 $\AA$로 낮은 박리 정도를 보이며, 전반적으로 고른 점토 분산상을 형성한다. 분자 량 및 용융혼합공정의 차이에 따른 폴리프로필렌/점토 나노복합체의 미세 모폴로지 차이로 기계적 물성 및 결정 화거동이 관찰되었으며, 분자량 410(kg/mol)인 폴리프로필렌은 개질된 점토를 1~3 wt% 첨가함으로써 순수 폴 리프로필렌의 연성특성을 유지하면서 향상된 인장강도와 탄성률을 보였다.

Keywords

References

  1. Y. Kojima, A. Usuki., M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  2. J. Kim and S. Hwnag, Polymer(Korea), 29, 87 (2005).
  3. M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick, Macromol. Res., 11, 260 (2003). https://doi.org/10.1007/BF03218362
  4. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: Polym. Chem., 33, 1047 (1995). https://doi.org/10.1002/pola.1995.080330707
  5. T. Lan, P. D. Kaviratna, and T. Pinnavaia, J. Chem. Mater., 6, 573 (1994). https://doi.org/10.1021/cm00041a002
  6. A. Okada and A. Usuki, Macromol. Mater. Eng., 291, 1449(2006). https://doi.org/10.1002/mame.200600260
  7. U. Hoffman, K. Endell, and D. Z. Will, Krist., 86, 340 (1933).
  8. T. J. Pinnavaia, Science, 220, 365 (1983). https://doi.org/10.1126/science.220.4595.365
  9. S. G. Lyu, E. Y. Park, K. S. Bae, and G. S. Sur, Polymer (Korea), 25, 421 (2001).
  10. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997). https://doi.org/10.1021/ma961786h
  11. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, Clearfield, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 31, 983 (1993). https://doi.org/10.1002/pola.1993.080310418
  12. D. M. Lincoln, R. A. Vaia, and R. Krishnamoorti, Macromolecules, 37, 4554 (2004). https://doi.org/10.1021/ma049768k
  13. D. M. Lincoln, R. A. Vaia, Z. G. Wang, and B. S. Hsiao, Polymer, 42, 1621 (2001). https://doi.org/10.1016/S0032-3861(00)00414-6
  14. H. C. Yang, P. Bhimaraj, L. Yang. R. W. Siegel, and L. S. Schadler, J. Polym. Sci. Part B: Polym. Phys., 45, 747 (2007). https://doi.org/10.1002/polb.21096
  15. G. Turturro, G. R. Brown, and L. E. Stpierre, Polymer, 25,659 (1984). https://doi.org/10.1016/0032-3861(84)90033-8
  16. S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44, 5625 (2003). https://doi.org/10.1016/S0032-3861(03)00623-2
  17. A. J. Waddon and Z. S. Petrovic, Polym. J., 34, 876 (2002). https://doi.org/10.1295/polymj.34.876
  18. E. Moncada, R. Quijada, and J. Retuert, J. Appl. Polym. Sci., 103, 698 (2007). https://doi.org/10.1002/app.24639
  19. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002). https://doi.org/10.1016/S0032-3861(02)00400-7
  20. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci, 87, 1329 (2003). https://doi.org/10.1002/app.11884
  21. H. R. Dennis. D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho. and D. R. Paul, Polymer, 42, 9513 (2001). https://doi.org/10.1016/S0032-3861(01)00473-6
  22. A. Vermogen, K. Masenelli-Varlot, R. Seguela, J. Duchet-Rumeau, S. Boucard, and P. Prele, Macromolecules, 38, 9661 (2005). https://doi.org/10.1021/ma051249+
  23. W. J. Boo, L. Sun, G. L. Warren, E. Moghbelli, H. Pham, A. Clearfield, and H. Sue, J. Polymer, 48, 1075 (2007). https://doi.org/10.1016/j.polymer.2006.12.042
  24. J. Duvall, C. Sellitti, C. Myers, A. Hiltner, and E. Baer, J Appl. Polym. Sci., 52, 207 (1994). https://doi.org/10.1002/app.1994.070520208
  25. J. Duvall, C. Sellitti, V. Topolkaraev, A. Hiltner, E. Baer, and C. Myers, Polymer, 35, 3948 (1994). https://doi.org/10.1016/0032-3861(94)90280-1
  26. J. Duvall, C. Sellitti, C. Myers, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 52, 195 (1994). https://doi.org/10.1002/app.1994.070520207
  27. K. W. Cho, F. K. Li, and J. Choi, Polymer, 40, 1719 (1999). https://doi.org/10.1016/S0032-3861(98)00404-2