DOI QR코드

DOI QR Code

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam

층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상

  • Yoo, Doo-Yeol (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Min, Kyung-Hwan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Jin-Young (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoon, Young-Soo (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 류두열 (고려대학교 건축사회환경공학부) ;
  • 민경환 (고려대학교 건축사회환경공학부) ;
  • 이진영 (고려대학교 건축사회환경공학부) ;
  • 윤영수 (고려대학교 건축사회환경공학부)
  • Received : 2012.01.06
  • Accepted : 2012.05.02
  • Published : 2012.08.31

Abstract

The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.

비산물체의 충돌 및 폭발, 테러 등의 극한하중에 의한 구조물의 붕괴는 재산상의 손실뿐만 아니라 다수의 인명피해를 유발한다. 일반적으로 콘크리트는 타 건설재료에 비해 충격 및 폭발 하중에 우수한 저항성능을 지니고 있다고 알려져 있으나, 준-정적(quasi-static)하중과는 달리 높은 변형률 속도를 갖는 극한하중을 고려하지 않고 설계된 기존의 콘크리트 구조물은 예상치 못한 극한하중에 노출될 경우 상당히 위험할 수 있다. 이 연구에서는 콘크리트 보의 충격저항성능을 향상시키기 위해 길이 30 mm의 번들형 양단 hooked type의 강섬유를 전체 부피의 0%에서 1.5%까지 혼입하여 정하중 및 충격하중 휨 실험을 수행하고, 그 성능을 평가하였다. 실험 결과 강섬유의 혼입률을 증가시킬 경우 정하중뿐만 아니라 충격하중에서도 휨강도와 연성 등 휨 저항성능이 크게 향상되는 경향을 보였다. 강섬유를 인장부에 집중적으로 혼입한 층 구조 콘크리트 보의 경우에는 동일한 양의 섬유를 보 전체에 타설한 시편에 비해 휨 저항성능이 향상되는 것으로 나타났다. 또한, 강섬유 보강 콘크리트의 재료적 비선형성을 고려하여 단자유도계(sing degree of freedom, SDOF) 시스템의 해석 알고리즘을 구성하고 실험 결과와 비교하였으며, 비교적 정확하게 최대 처짐을 예측하는 것으로 나타났다.

Keywords

References

  1. Krauthammer, T., Modern Protective Structures, CRC Press, 2007.
  2. Malvar, L. J., Crawford, J. E., and Morrill, K. B., "Use of Composites to Resist Blast," Journal of Composites for Construction, Vol. 11, No. 6, 2007, pp. 601-610. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:6(601)
  3. 류두열, 민경환, 이진영, 윤영수, "섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가," 콘크리트학회 논문집, 24권, 3호, 2012, pp. 293-303. https://doi.org/10.4334/JKCI.2012.24.3.293
  4. 조성훈, 민경환, 김윤지, 윤영수, "CFRP Sheet 및 강섬유로 보강된 RC 보의 충격저항성능 평가," 콘크리트학회 논문집, 22권, 5호, 2010, pp. 719-725.
  5. 이나현, 김성배, 김장호, 조윤구, "폭발하중을 받는 콘크리트 구조물의 실험적 거동분석: (2) 초고강도 콘크리트 및 RPC 슬래브의 실험 결과," 대한토목학회 논문집, 29 권, 5A호, 2009, pp. 565-575.
  6. Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., and Whittaker, A. S., "Blast Testing of Ultra-High Performance Fibre and FRP-Retrofitted Concrete Slabs," Engineering Structures, Vol. 31, No. 9, 2009, pp. 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020
  7. Teng, T. L., Chu, Y. A., Chang, F. A, Shen, B. C., and Cheng, D. S., "Development and Validation of Numerical Model of Steel Fiber Reinforced Concrete for High-Velocity Impact," Computational Materials Science, Vol. 42, No. 1, 2008, pp. 90-99. https://doi.org/10.1016/j.commatsci.2007.06.013
  8. Shin, S. K., Kim, J. J. H., and Lim, Y. M., "Investigation of the Strengthening Effect of DFRCC Applied to Plain Concrete Beams," Cement and Concrete Composites, Vol. 11, No. 6, 2007, pp. 465-473.
  9. Park, K. S., Paulino, G. H., and Roesler, J., "Cohesive Fracture Model for Functionally Graded Fiber Reinforced Concrete," Cement and Concrete Research, Vol. 11, No. 6, 2010, pp. 956-965.
  10. Shen, B., Hubler, M., Paulino, G. H., and Struble, L. J., "Functionally-Graded Fiber-Reinforced Cement Composite: Processing, Microstructure, and Properties," Cement and Concrete Composites, Vol. 11, No. 6, 2008, pp. 663-673.
  11. Zhang, J., Leung, C. K. Y., and Cheung, Y. N., "Flexural Performance of Layered ECC-Concrete Composite Beam," Composites Science and Technology, Vol. 11, No. 6, 2005, pp. 1501-1512.
  12. 민경환, 양준모, 김미혜, 윤임준, 윤영수, "층 구조를 갖는 하이브리드 PVA FRCC RC 보의 충격하중에서의 휨 거동," 한국콘크리트학회 가을학술대회 논문집, 23권, 2호, 2011, pp. 621-622.
  13. 양준모, 신현오, 민경환, 윤영수, "이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 거동," 콘크리트학회 논문집, 23권, 3호, 2011, pp. 273-280. https://doi.org/10.4334/JKCI.2011.23.3.273
  14. Wang, N., Mindess, S., and Ko, K., "Fibre Reinforced Concrete Beams under Impact Loading," Cement and Concrete Research, Vol. 26, No. 3, 1996, pp. 363-376. https://doi.org/10.1016/S0008-8846(96)85024-1
  15. Ati, C. D. and Karaham, O., "Properties of Steel Fiber Reinforced Fly Ash Concrete," Construction and Building Materials, Vol. 23, No. 1, 2009, pp. 392-399. https://doi.org/10.1016/j.conbuildmat.2007.11.002
  16. Naaman, A. E. and Reinhardt, H. W., "Proposed Classification of HPFRC Composites Based on their Tensile Response," Materials and Structures, Vol. 39, No. 5, 2006, pp. 547-555.
  17. Habel, K. and Gauvreau, P., "Response of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to Impact and Static Loading," Cement and Concrete Composites, Vol. 30, No. 10, 2008, pp. 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001
  18. CEB-FIP, "Concrete Structures under Impact and Impulsive Loading," Bulletine No. 187, 1988.
  19. TM5-1300/AFR 88-2/NAVFAC P-39, Structures to Resist the Effects of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC, 1990.
  20. Comert, M. and Ilki, A., "Explosion Performance of a Ball Powder Production Facility," Journal of Performance of Constructed Facilities, ASCE, Vol. 24, No. 4, 2010, pp. 326-336. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000108
  21. Chopra, A. K., Dynamics of Structures-Theory and Applications to Earthquake Engineering, 2nd Edition, Prentice Hall, 2001.
  22. Ngo. T., Mendis, P., Gupta, A., and Ramsay, J., "Blast Loading and Blast Effects on Structures-An Overview," Electronic Journal of Structural Engineering, Special Issue: Loading on Structures, 2007, pp. 76-91.

Cited by

  1. Effect of Different Energy Frames on the Impact Velocity of Strain Energy Frame Impact Machine vol.27, pp.4, 2015, https://doi.org/10.4334/JKCI.2015.27.4.363
  2. Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet vol.26, pp.5, 2014, https://doi.org/10.4334/JKCI.2014.26.5.627