• 제목/요약/키워드: High-Flowability Concrete

검색결과 134건 처리시간 0.047초

고유동페이스트의 유동특성에 미치는 멜라민계 고성능가수제의 영향 (The Effect of Melamine Sulphonate High-Range Water Reducing Agent to the Fluidity of High-Flowability Paste)

  • 남지현;조은영;오상균;김정길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.71-74
    • /
    • 2005
  • The viscosity of high-flowability paste is very high compared to normal concrete for the low water-binder ratio(W/B). Therefore, high-flowability concrete is positively necessary to high-range water reducing agent. High-Flowability paste can make much higher fluidity with no occurrence of segregation, by its higher viscosity and lower yield value than normal concrete. The flowability of high-flowability paste must be evaluated not only by convention consistency test such as slump test but also by the base of the rheological properties of the fresh concrete. The purpose of this study is to analyze the fluidity of high-flowability paste according to the addition ratio of the Melamine Sulphonate high-range water reducing agent.; high-flowability paste is considered as Bingham plastic fluid with the rheology parameters of the plaste viscosity and yield value.

  • PDF

잔골재 혼합사용이 석회암 굵은 골재 사용 초고강도 콘크리트의 유동특성에 미치는 영향 (Effect of Mixed Use of Fine Aggregates on the Flowability of Ultra High Strength Concrete)

  • 이홍규;김민영;이순재;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2015
  • As this study is one related to ultra high strength concrete using crushed coarse limestone aggregates among the series of experiments for improving the economic inefficiency of the ultra high strength concretes used for high rise structures, it has analyzed the flowability of ultra high strength concrete according to the variation of blended fine aggregates. As a result of analyzing the characteristics of fresh concrete, it is determined that the application of ultra high strength concrete would be difficult in case of a mix using blended fine aggregates as lower flowability than the mix using limestone crushed fine aggregate only was shown in all mixes using blended fine aggregates.

  • PDF

굵은 골재 및 잔골재 변화가 초고강도 콘크리트의 유동특성에 미치는 영향 (Effect of the Combination of Coarse Aggregate and Fine Aggregate on the Flowability of Ultra High Strength Concrete)

  • 이홍규;이순재;김상섭;박용준;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.71-72
    • /
    • 2015
  • As this study is the one related to the ultra high strength concrete essentially used for high rise buildings, it has analyzed on the flowability of ultra high strength concrete according to the variation of coarse aggregate and fine aggregate. The coarse aggregate was planned as two types including Granite Aggregate (GA) and crushed coarse Limestone Aggregate (LA) while fine aggregate was planned as four types including Sea Sand (SS), Limestone Crushed Fine Aggregates (LFA), Electric Arc Furnace Oxidizing Slag Aggregates (EFA) and Crushed Sand (CS) to perform experiment with a total of eight variables. As a result of analyzing slump flow, 500mm concentration time, U-Box and L-Flow, etc. among the characteristics of fresh concrete, a mix using LA+LFA is determined to show high flowability in case of applying ultra high strength concrete.

  • PDF

미세 고로슬래그 분말을 혼합한 시멘트의 레올로지 특성 (Rheological Properties of Cement Mixed with Fine Blast Furnace Slag Powder Blended Cement)

  • 박춘근;김남호;김학연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.31-35
    • /
    • 2003
  • High-Flowability Concrete has many advanced properties and been focused on their workability. Because of the difficulty in understanding of the quality of High-Flowablity Concrete just using slump properties, many studies have been carried out rheological properties influenced on concrete fluidity. In this paper, for the purpose of expecting some level of rheological properties, the change of rheological properties of High-Flowability Concrete with dosages and types of superplasticizer, and various addition amounts addictives were investigated.

  • PDF

배합조건에 따른 고유동콘크리트의 성상에 관한 실험적 연구 (An Experimental Study on the Mixing Condition of High-Flow Concrete)

  • 김상철;엄태용;최수홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 1995
  • Most difficulties in inducing high flowability of general strength concrete arise from the segregation of aggregates due to the shortage of cementatious binders. To solve the problem, our research team has concentrated on finding the binders to link a gap between coarse and fine aggregates, under the condition not to influence a concrete strength. As a result of using stone powder or a middle class of aggregate size mostly used for asphalt pavement(Max. dia 13mm), we found that flowability of concrete increased significantly without aggregation and decrease of compressive strength.

  • PDF

복합섬유를 혼입한 초고강도 콘크리트의 폭렬 특성 평가 (Evaluation on Spalling Properties of Ultra High Strength Concrete with Combined Fiber)

  • 손명학;김규용;민충식;이태규;구경모;윤용상
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.209-210
    • /
    • 2011
  • This study is aimed to draw a optimum combined fiber mix condition to improve spalling resistance and flowability of ultra high-strength concrete. As a result, W/B 12.5% concrete specimens were prevented spalling with PE0.05+ PP0.1, PE0.05+NY0.1 and W/B 12.5% concrete specimens were prevented spalling with all of combined organic fiber mix condition. But There is no significant influence of steel fiber under 5% volume ratios to prevent spalling. In the scope of this study, we suggest that condition of optimum volume ratio PE0.05+NY0.1 is to improve spalling resistance, flowability and residual compressive strength.

  • PDF

대단면 터널용 고성능 콘크리트 라이닝의 개발 (Development of High Performance Concrete Tunnel Linnig with Large Dimension)

  • 차훈;이창훈;손유신;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.53-56
    • /
    • 2005
  • High flowable concrete was first developed in 1988 to achieve durable concrete structures. High flowable concrete can improve workability sharply reason why the concrete has properties of resistance to segregation, filling ability, passing ability without compacting. Therefore, as we apply a high flowable concrete to a large dimensional tunnel which constructed in special environment, we can get workability, strength and durability required. Tunnel lining concrete with a large dimension has to use necessarily fly ash and slag for the properties of high flowability and watertight. We can expect improvement of workability and durability, mitigation of hydration, reducing shrinkage, enhancement of watertight by using cementitious materials. This paper proposes investigations for establishing a mix-design method and high flowability-strength testing methods have been carried out from the viewpoint of making a standard concrete tunnel lining with large dimension a standard.

  • PDF

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

초유동콘크리트의 유동특성에 관한 실험적 연구 (An Experimental Study on the Flowability of Super Flowing Concrete)

  • 권영호;이상수;박연동;김진근;박칠림
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.1-7
    • /
    • 1995
  • In this paper, we decribed the basic elements required for the practical usage of super flowing concrete. The flowability and filingability of fresh concrete was measured by using six different testing methods. Also, two actual size members were used for investigating characteristics of the hardened concrete through variious experiments. As the result of the experimentation, the developed super flowing concrete shown high flowability and fillingability good enough for the requirement. Furthermore, inner uniformity of the no-vibrated concrete was verified by testing distribution of aggregates and core cylinders. Therefore, quality control and workability of concrete can be secured by using the super flowing concrete even without vibrating However, it ha been felt that development of easy evaluation methods for the super flowing concrete is in need.

  • PDF

자철석 분말 및 동슬래그를 잔골재로 활용한 중량 콘크리트의 유동성 평가 (Evaluation of the Flowability of the Heavyweight Concrete using Magnetite Powder and Copper Slag as Fine Aggregate)

  • 문훈;김지현;정철우;이재용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2018
  • The Research is underway to utilize heavyweight concrete for various applications. One of them is to use heavy concrete as a marine concrete such as a breakwater to resist wave. Marine concrete is often complex in shape and requires high fluidity. When the heavyweight concrete is high fluidity, there is a high risk of segregation due to the high density of the coarse aggregate. Therefore, we evaluate the fluidity of heavyweight concrete using heavy fine aggregate. As a result of the fluidity evaluation of the heavyweight concrete, the fluidity of the heavy fine aggregate was similar to that of ordinary concrete. Therefore, it is considered that the use of heavy fine aggregate in the development of high fluidity heavyweight concrete will be one of the methods.

  • PDF