• Title/Summary/Keyword: High energy ion implantation

Search Result 73, Processing Time 0.023 seconds

Low Dielectric Constant of MeV ion-Implanted Poly(vinylidene fluoride)

  • Lee, Sang-Yun;Kim, Bo-Hyun;Park, Soung-Kyu;Jinsoo Joo;Beag, Yowng-Whoan;Koh, Seok-keun
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Poly (vinylidene fluoride) (PVDF) samples were implanted by using high energy (MeV)F$^{2+}$ and Cl$^{2+}$ ions. We observed that AC dielectric constant of the ion-implanted PVDF samples decreased from 10.5 to 2.5 at 1 kHz as the ion dosage increased from 10$^{11}$ to 3 $\times$ 10$^{14}$ ions/$\textrm{cm}^2$. From differential scanning calorimetry experiments, we observed that PVDF samples become more disordered state through the ion implantation. The decrease of the number of bonding of C-H and C-F and the increase of unsaturated bonding were observed from X-ray photoelectron spectroscopy experiments. The emission of HF and H$_2$ molecules during the ion implantation was detected by residual gas analyzer spectrum. Based upon the results, we analyzed that the low AC dielectric constant of the MeV ion-implanted PVDF samples originated from the reduction of polarization due to the structural change of the CF$_2$ molecules in the MeV ion-implanted PVDF samples.les.

A High-Resolution Transmission Electron Microscopy Study on the Lattice Defects Formed in the High Energy P Ion Implanted Silicon (고에너지 P이온 주입한 실리콘에 형성된 격자 결함에 관한 고분해능 투과전자현미경 연구)

  • 장기완;이정용;조남훈;노재상
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1377-1382
    • /
    • 1995
  • A high-resolution transmission electron microscopy study on the lattice defects formed in the high energy P ion implanted silicon was carried out on an atomic level. Results show that Lomer dislocations, 60$^{\circ}$perfect dislocations, 60$^{\circ}$ dislocation dipole and extrinsic stacking fault formed in the near Rp of as-implanted specimen. In the annelaed specimens, interstitial Frank loops, 60$^{\circ}$perfect disolations, 60$^{\circ}$dislocation dipoles, stacking faults, precipitates, perfect dislocation loops and <112> rodlike defects existed exclusively near in the Rp with various annealing temperature and time. From these results, it is concluded that extended secondary defects as well as the point defect clusters could be formed without annealing. Even at low temperature annealing such as 55$0^{\circ}C$, small interstitial Frank loops could be formed and precipitates were also formed by $700^{\circ}C$ annealing. The defect band annealed at 100$0^{\circ}C$ for 1 hr could be divided into two regions depending on the distribution of the secondary defects.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

이온주입 에너지에 따른 Auger Si KLL Peak Shift 및 Ti 계열 화합물의 Chemical State 관찰

  • Heo, Sung;Park, Yoon-Baek;Min, Gyung-Yeol;Lee, Sun-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.83-83
    • /
    • 1999
  • 본 연구에서는 Auger Elecrtron Spectroscopy (AES) 장비를 이용하여 Silicone Wafer 표면에 BF 이온을 주입시킨 후 Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화를 관찰하였다. 또한 PVD Ti 계열 화학물의 시료에 대하여 Peak의 Shape 변화를 관찰하였다. 1)Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화 관찰 일반적으로 Silicone 기판에 Arsenic(3가)을 Dopping 하였을 경우, Si KLL Peak의 Kinetic Energy 값은 순수 Si Peak보다 더 작은 값으로 Shift 하며, Boron (5가)을 Dopping하였을 경우에는 더 큰 값으로 Shift 한다. 이론적으로 N-type Si의 에너지 차이는 약 1.0eV로 보고되어 있으며, AES를 이용하여 실험적으로 측정된 값은 약 0.6eV정도로 알려져 있다. 이러한 차이는 Dopping 농도에 따라 Valance Band의 에너지 값이 변화하기 때문이라고 알려져 있다. 본 연구에서는 BF2를 Si에 이온 주입하여 입사 에너지 및 dose 량에 따른 Si KLL Peak의 변화를 관찰하였다. 그림1과 같이 Si KLL Peak는 Implantation Energy가 작을수록 Kinetic Energy가 높은 곳으로 Shift 한다. 이는 LOw Energy로 이온 주입하면, Projected Range (Rp)가 High Energy로 이온 주입할 때보다 작기 때문이며, 이 결과를 Secondary Ion Mass Spectroscopy (SIMS) 및 TRIM simulation을 이용하여 확인하였다. 또한 표면에서의 전자 Density의 변화와 Implantation energy와의 관계를 시료의 표면에서 반사되어 나오는 전자의 에너지 손실(Reflected Electron Energy Loss Spectroscopy:REELS)을 통하여 고찰하였다. 2) PVD Ti 계열화합물의 시료에 대한 peak의 shape 가 변화하며, TiL3M23V (Ti2) 및 TiL3M23M23 (Til) Peak의 Intensity Ratio가 변화한다. 따라서 본 연구에서는 그림 2와 같이 Ti 결합 화합물에서의 Ti Auger Peak의 특성 에너지 값과 Peak Shape를 관찰하여, AES를 이용하여 Ti 계열의 화합물에 대한 Chemical state 분석의 가능성을 평가하였다.

  • PDF

A study on latch-up immune structure by high energy ion implantation (고에너지 이온 주입을 이용한 latch-up 면역에 관한 구조 연구)

  • 노병규;안태준;강희원;조소행;오환술
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.441-444
    • /
    • 1998
  • This paper is concerned with researching latch-up immune CMOS structure was performed. By the simulation results, the connecting layer had more effect than the buried layer to latch-up immune. When the connecting layer was the dose 1*10$^{14}$ /cm$^{2}$ and the energy 500KeV, the trigger current was more 0.6mA/.mu.m and the trigger voltage was 6V. The more the connecting layer dose was lower, the more the latch-up immune characteristics was butter.

  • PDF

A Design of Ion-Implanted GaAs MESFET's Having High Transconductance Characteristics (이온 주입공정에 의한 고 GaAs MESFET의 설계)

  • Lee, Chang Seok;Shim, Gyu-Hwan;Park, Hyung Moo;Park, Sin-Chong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.789-794
    • /
    • 1986
  • The current-voltage characteristics of ion-implanted GaAs MESFET's have been simulated by using the velocity saturation model. Using this model, a MESFET with threshold voltage of -0.5V and transconductance of 460 mS/mm is designed. To implement high transconductance MESFET's, low energy ion-implantation (20 keV) and RTP(Rapid Thermal Process) activation ($575^{\circ}C$, 5sec) processes are required.

  • PDF

Deuterium Ion Implantation for The Suppression of Defect Generation in Gate Oxide of MOSFET (MOSFET 게이트 산화막내 결함 생성 억제를 위한 효과적인 중수소 이온 주입)

  • Lee, Jae-Sung;Do, Seung-Woo;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.23-31
    • /
    • 2008
  • Experiment results are presented for gate oxide degradation under the constant voltage stress conditions using MOSFETs with 3-nm-thick gate oxides that are treated by deuterium gas. Two kinds of methods, annealing and implantation, are suggested for the effective deuterium incorporation. Annealing process was rather difficult to control the concentration of deuterium. Because the excess deuterium in gate oxide could be a precursor for the wear-out of gate oxide film, we found annealing process did not show improved characteristics in device reliability, compared to conventional process. However, deuterium implantation at the back-end process was effective method for the deuterated gate oxide. Device parameter variations as well as the gate leakage current depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to those of conventional process. Especially, we found that PMOSFET experienced the high voltage stress shows a giant isotope effect. This is likely because the reaction between "hot" hole and deuterium is involved in the generation of oxide trap.

Ultra-shallow Junction with Elevated SiCe Source/ Drain fabricated by Laser Induced Atomic Layer Doping (레이저 유도 원자층 도핑(Ll-ALD)법으로 성장시킨 SiGe 소스/드레인 얕은 접합 형성)

  • 장원수;정은식;배지철;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.29-32
    • /
    • 2002
  • This paper describes a novel structure of NMOSFET with elevated SiGe source/drain region and ultra-shallow source/drain extension(SDE)region. A new ultra-shallow junction formation technology. Which is based on damage-free process for rcplacing of low energy ion implantation, is realized using ultra-high vacuum chemical vapor deposition(UHVCVD) and excimer laser annealing(ELA).

  • PDF

Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I) (Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I))

  • Kim, Dae-Yeon;Gang, Gye-Won;Choe, Byeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.459-463
    • /
    • 2000
  • Direct use of negative ions for modification of materials has opened new research such as charging-free ion implantation and new materials syntheses by pure kinetic bonding reactions. For these purposes, a new solid-state ce-sium ion source has been developed in the laboratory scale. In this paper, diamond like carbon(DLC) films were prepared on silicon wafer by a negative cesium ion gun. This system does not need any gas in the chamber; deposition occurs under high vacuum. The ion source has good control of the C- beam energy(from 80 to 150eV). The result of Raman spectrophotometer shows that the degree of diamond-like character in the films, $sp^3$ fraction, increased as ion beam energy increases. The nanoindentation hardness of the films also increases from 7 to 14 GPa as a function of beam energy. DLC films showed ultra-smooth surface(Ra~1$\AA$)and an impurity-free quality.

  • PDF

Defect Formatìon and Annealìng Behavìor in MeV Si Self-Implanted Silicon (MeV Si 자기 이온주입된 단결정 Silicon내의 결함 거동)

  • Cho, Nam-Hoon;Jang, Ki-Wan;Suh, Kyung-Soo;Lee, Jeoung-Yong;Ro, Jae-Sang
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.733-741
    • /
    • 1996
  • In this study MeV Si self ion implantations were done to reveal the intrinsic behavior of defect formation by excluding the possibility of chemical interactions between substrate atoms and dopant ones. Self implantations were conducted using Tandem Accelerator with energy ranges from 1 to 3 MeV. Defect formation by high energy ion implantation has a significant characteristics in that the lattice damage is concentrated near Rp and isolated from the surface. In order to investigate the energy dependence on defect formation, implantation energies were varied from 1 to 3 MeV under a constant dose of $1{\times}10^{15}/cm^2$. RBS channe!ed spectra showed that the depth at which as-implanted damaged layer formed increases as energy increases and that near surface region maintains better crystallinity as energy increases. Cross sectional TEM results agree well with RBS ones. In a TEM image as-implanted damaged layer appears as a dark band, where secondary defects are formed upon annealing. In the case of 2 MeV $Si^+$ self implantation a critical dose for the secondary defect formation was found to be between $3{\times}10^{14}/cm^24$ and $5{\times}10^{14}/cm^2$. Upon annealing the upper layer of the dark band was removed while the bottom part of the dark band did not move. The observed defect behavior by TEM was interpreted by Monte Carlo computer simulations using TRIM-code. SIMS analyses indicated that the secondary defect formed after annealing gettered oxygen impurities existed in silicon.

  • PDF