Low Dielectric Constant of MeV ion-Implanted Poly(vinylidene fluoride)

  • Lee, Sang-Yun (Department of Physics and Center for Electro and Photo Responsive Molecules, Korea University) ;
  • Kim, Bo-Hyun (Department of Physics and Center for Electro and Photo Responsive Molecules, Korea University) ;
  • Park, Soung-Kyu (Department of Physics and Center for Electro and Photo Responsive Molecules, Korea University) ;
  • Jinsoo Joo (Department of Physics and Center for Electro and Photo Responsive Molecules, Korea University) ;
  • Beag, Yowng-Whoan (Thin Film Technology, Research Center, Korea Institute of Science and Technology) ;
  • Koh, Seok-keun (Thin Film Technology, Research Center, Korea Institute of Science and Technology)
  • Published : 2003.02.01

Abstract

Poly (vinylidene fluoride) (PVDF) samples were implanted by using high energy (MeV)F$^{2+}$ and Cl$^{2+}$ ions. We observed that AC dielectric constant of the ion-implanted PVDF samples decreased from 10.5 to 2.5 at 1 kHz as the ion dosage increased from 10$^{11}$ to 3 $\times$ 10$^{14}$ ions/$\textrm{cm}^2$. From differential scanning calorimetry experiments, we observed that PVDF samples become more disordered state through the ion implantation. The decrease of the number of bonding of C-H and C-F and the increase of unsaturated bonding were observed from X-ray photoelectron spectroscopy experiments. The emission of HF and H$_2$ molecules during the ion implantation was detected by residual gas analyzer spectrum. Based upon the results, we analyzed that the low AC dielectric constant of the MeV ion-implanted PVDF samples originated from the reduction of polarization due to the structural change of the CF$_2$ molecules in the MeV ion-implanted PVDF samples.les.

Keywords

References

  1. Nucl. Instr. and Meth. B v.151 E. H. Lee https://doi.org/10.1016/S0168-583X(99)00129-9
  2. Nucl. Instr. and Meth. B v.59;60 L. Calcagno;G. Foti
  3. Nucl. Instr. and Meth. B v.116 S. Klaumunzer;Q. Q. Zhu;W. Schnabel;G. Schmacher https://doi.org/10.1016/0168-583X(96)00028-6
  4. Phys. Rev. B v.58 G. Du;V. N. Prigodin;A. Burns;J. Joo;C. S. Wang;A. J. Epstein https://doi.org/10.1103/PhysRevB.58.4485
  5. Phys. Rev. B v.61 G. Du;A. Burns;V. N. Prigodin;C. S. Wang;J. Joo;A. J. Epstein https://doi.org/10.1103/PhysRevB.61.10142
  6. Phys. Rev. B v.54 A. N. Aleshin;N. B. Mironkov;A. V. Suvorov;J. A. Conklin;T. M. Su;R. B. Kaner https://doi.org/10.1103/PhysRevB.54.11638
  7. Nucl. Instr. and Meth. B v.151 A. D. Bonis;A. Bearzotti;G. Marletta https://doi.org/10.1016/S0168-583X(99)00135-4
  8. J. Appl. Phys. v.83 E. Yap;D. G. McCulloch;D. R. McKenzie;M. V. Swain;L. S. Wielunski;R. A. Clissold https://doi.org/10.1063/1.367108
  9. J. Appl. Phys. v.86 L. Zhang;T. Yasui;H. Tahara;T. Yoshikawa https://doi.org/10.1063/1.370804
  10. Nucl. Instr. and Meth. B v.151 P. Cottin;R. A. Lessard;E. J. Knystautas;S. Roorda https://doi.org/10.1016/S0168-583X(99)00092-0
  11. Nucl. Instr. and Meth. B v.135 Y. Sun;C. Li;Z. Zhiyong;W. Liu;S. Yang https://doi.org/10.1016/S0168-583X(97)00631-9
  12. Microelectron. Eng. v.40 H. Treichel;G. Ruhl;P. Ansmann;R. Wurl;C. Muller;M. Dietlmeier https://doi.org/10.1016/S0167-9317(97)00185-8
  13. Optical Effects of Ion Implantation P. D. Townsend;P. J. Chandler;L. Zhang
  14. Nucl. Instr. and Meth. B v.105 E. Balanzat;N. Betz;S. Bouffard https://doi.org/10.1016/0168-583X(95)00521-8
  15. Nucl. Instr. and Meth. B v.69 M. B. Lewis;E. H. Lee https://doi.org/10.1016/0168-583X(92)96028-W
  16. Key Eng. Mater. v.92;93 T. Furukawa
  17. Key Eng. Mater. v.92;93 M. Latour
  18. Ferroelectric Polymers :Chemistry, Physics and Applications K. Tashiro;H. S. Nalwa(ed.)
  19. Ferroelectric Polymers : Chemistry, Physics and Applications R. Glen Kepler;H. S. Nalwa(ed.)
  20. Korea Polym. J. v.4 H. Satio;C. H. Lee;T. Inoue
  21. Makromol. Res. v.10 W. S. Kim;H. S. Song;B. O. Lee;K. H. Kwon;Y. S. Lim;M. S. Kim
  22. Korea Polym. J. v.3 J. H. Kim;T. K. Park;H. Lee;D. J. Lee
  23. The Stopping and Range of Ions in Solids J. F. Ziegler;J. P. Biersack;V. Littmark
  24. Electrochim. Acta v.45 T. Michot;A. Nishimoto;M. Watanabe https://doi.org/10.1016/S0013-4686(99)00343-6
  25. Nucl. Instr. and Meth. B v.105 R. Percolla;P. Musumeci;L. Calcagno;G. Foti;G. Ciavola https://doi.org/10.1016/0168-583X(95)00636-2
  26. Nucl. Instr. and Meth. B v.151 A. L. Bouedec;N. Betz;S. Esnouf;A. L. Moel https://doi.org/10.1016/S0168-583X(99)00072-5
  27. J. Polym. Sci., Polym. Chem. Ed. v.11 D. T. Clark;W. J. Feast;D. Killeast;W. K. R. https://doi.org/10.1002/pol.1973.170110207
  28. J. Electrochem. Soc. v.146 S. Han;S. K. Koh;K. H. Yoon https://doi.org/10.1149/1.1392636
  29. Nucl. Instr. and Meth. B v.32 E. H. Adem;S. J. Bean;C. M. Demanet;A. Le Moel;C. M. Duraud https://doi.org/10.1016/0168-583X(88)90206-6
  30. Polym. Degrad. Stab. v.61 M. D. Duca;C. L. Plosceanu;T. Pop https://doi.org/10.1016/S0141-3910(97)00130-4
  31. Nucl. Instr. and Meth. B v.117 L. Torrisi;R. Percolla https://doi.org/10.1016/0168-583X(96)00298-4
  32. Nucl. Instr. and Meth. B v.116 L. Torrisi;G. Ciavola;R. Percolla;F. Benyaich https://doi.org/10.1016/0168-583X(96)00091-2
  33. Polymer v.41 N. Moussaif;C. Pagnoulle;J. Riga;R. Jerome https://doi.org/10.1016/S0032-3861(99)00498-X
  34. Polymer v.42 G. J. Ross;J. F. Watts;M. P. Hill;P. Morrissey https://doi.org/10.1016/S0032-3861(00)00328-1