• 제목/요약/키워드: Harmonic spaces

검색결과 50건 처리시간 0.028초

TOEPLITZ OPERATORS ON HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

  • Yi, HeungSu
    • Korean Journal of Mathematics
    • /
    • 제7권2호
    • /
    • pp.271-280
    • /
    • 1999
  • We study Toeplitz operators on the harmonic Bergman Space $b^p(\mathbf{H})$, where $\mathbf{H}$ is the upper half space in $\mathbf{R}(n{\geq}2)$, for 1 < $p$ < ${\infty}$. We give characterizations for the Toeplitz operators with positive symbols to be bounded.

  • PDF

HARMONIC CONJUGATES OF WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

  • Nam, Kye-Sook;Yi, Heung-Su
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.449-457
    • /
    • 2003
  • On the setting of the upper half-space of the Euclidean space $R^{n}$, we show that to each weighted harmonic Bergman function $u\;\epsilon\;b^p_{\alpha}$, there corresponds a unique conjugate system ($upsilon$_1,…, $upsilon_{n-1}$) of u satisfying $upsilon_j{\epsilon}\;b^p_{\alpha}$ with an appropriate norm bound.

WEAKLY SUFFICIENT SETS FOR WEIGHTED SPACES hΦ-(B)

  • Khoi, Le Hai
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.215-227
    • /
    • 2011
  • In this paper we introduce a class $h^{-\infty}_{\Phi}(\mathbb{B})$ of weighted spaces of harmonic functions in the unit ball $\mathbb{B}$ of $\mathbb{R}^n$. We dene weakly sufficient sets in this space and give an explicit construction of countable sets of such a type. Various examples of weight functions are also discussed.

EINSTEIN-TYPE MANIFOLDS WITH COMPLETE DIVERGENCE OF WEYL AND RIEMANN TENSOR

  • Hwang, Seungsu;Yun, Gabjin
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1167-1176
    • /
    • 2022
  • In this paper, we study Einstein-type manifolds generalizing static spaces and V-static spaces. We prove that if an Einstein-type manifold has non-positive complete divergence of its Weyl tensor and non-negative complete divergence of Bach tensor, then M has harmonic Weyl curvature. Also similar results on an Einstein-type manifold with complete divergence of Riemann tensor are proved.

THE ATOMIC DECOMPOSITION OF HARMONIC BERGMAN FUNCTIONS, DUALITIES AND TOEPLITZ OPERATORS

  • Lee, Young-Joo
    • 대한수학회보
    • /
    • 제46권2호
    • /
    • pp.263-279
    • /
    • 2009
  • On the setting of the unit ball of ${\mathbb{R}}^n$, we consider a Banach space of harmonic functions motivated by the atomic decomposition in the sense of Coifman and Rochberg [5]. First we identify its dual (resp. predual) space with certain harmonic function space of (resp. vanishing) logarithmic growth. Then we describe these spaces in terms of boundedness and compactness of certain Toeplitz operators.