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HARMONIC CONJUGATES OF
WEIGHTED HARMONIC BERGMAN
FUNCTIONS ON HALF-SPACES

KyeEsook NAM AND HEUNGSU YI

ABSTRACT. On the setting of the upper half-space of the Euclidean
space R", we show that to each weighted harmonic Bergman func-
tion u € b%, there corresponds a unique conjugate system (v1,...,
vn—1) of u satisfying v; € b3, with an appropriate norm bound.

1. Introduction

For a fixed positive integer n, let H = R"~! x R, be the upper half-
space where R denotes the set of all positive real numbers. We write
point z € H as z = (#/, 2,) where 2’ € R*! and 2, > 0.

For o > —1 and 1 < p < oo, let b5 (H) denote the weighted harmonic
Bergman space consisting of all real-valued harmonic functions v on H
such that

lullz = ( [ a2 dva<z>)1/p < oo,

where dV,(2) = 25 dz and dz is the Lebesgue measure on R®. We let
bh = bZ(H) and b = bg. Then we can check easily that the space b3 is
a Banach space with the usual weighted LP-norm.

Because H is a unbounded domain, it causes some problems. For
example, the weighted harmonic Bergman kernel is not even integrable
with respect to dV,, unlike the case of bounded domains. Fortunately,
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not all the news about H is bad. One of the “nice” fact about H is that
it is invariant under dilations, i.e., for every r > 0,

{rz|zeH}=H.

(There is nothing on the ball analogous to the dilation structure of H.)
This dilation invariant property gives us to use change of variable (es-
pecially with respect to the last coordinate) which helps us to estimate
the size of some integrals that appear in the course of proofs.

Given a harmonic function u on H, the functions vy,...,v,-1 on H
are called harmonic conjugates of u if

(1.1) (’Ul,- .. ,vn_l,u) = Vf

for some function f harmonic on H, where V f denotes the gradient of
f. In this case we call (v1,...,v,-1) a conjugate system of u. Note that
if (1.1) holds, then vy,...,v,—1 are partial derivatives of a harmonic
function, so they are harmonic on H. Also, (1.1) and the condition
that f is harmonic are equivalent to the following “generalized Cauchy-

Riemann equations”: for j,k=1,...,n—1,
DkUj = Djvk; Dnvj = Dju,
n—1
Z Dj’l)j + D,u=0.
j=1

It is well known that a conjugate system of a given harmonic func-
tion always exists on H. Unfortunately, a conjugate system is far from
unique. In fact if » > 2, then harmonic conjugates of a given function
u may well differ by more than a constant. We refer more on harmonic
conjugates to [4] and [5].

It is shown in [3] that for a given function u € bP, there exists a
unique conjugate system (vy,...,v,—1) of u satisfying v; € b for each
J-

In this paper as stated below, we show that this result also holds for
weighted harmonic Bergman spaces b, for any range oo > —1.

THEOREM 1. Let oo > —1 and let 1 < p < co. Then to each u € b5,
there corresponds a unique conjugate system (vi,...,Un—1) of u such
that v; € bh. Moreover,

n—1
D lljllzg ~ lellzg

j=1

as u ranges over all functions in bk,
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This paper is organized as follows. In section 2, we review some
results about the extended Poisson kernel and its fractional derivatives
on H. Also, we show some lemmas to prove Theorem 1. Section 3 is
devoted to the proof of Theorem 1.

CoONSTANTS. Throughout the paper we use the same letter C' to
denote various constants which may change at each occurrence. The
constant C' may often depend on the dimension n» and some other pa-
rameters, but it is always independent of particular functions, points or
parameters under consideration. For nonnegative quantities A and B,
we often write A < B if A is dominated by B times some inessential
positive constant. Also, we write A~ B if A< B and B < A.

2. Preliminary results

In this section, we review some preliminary results about the weighted
harmonic Bergman kernel and its related facts. Because its explicit form
takes the fractional derivative of the extended Poisson kernel, we start
with the extended Poisson kernel on the upper half-space.

Let P(z,w) be the extended Poisson kernel on H, i.e.,

2 zptw,

&1 =(w) = Plw) = Srrm

where z,w € H and W = (w', —wy,). Note that foreach j =1,...,n—1,
D, P(z,w) = —Dy,P(z,w) and D,, P(z,w) = Dy, P(z,w). Therefore
we can show from (2.1) that for multi-indices m = (my,...,m,) and
k = (ki,..., kn),

D®DEP(z,w) = DI ... DI DR ... D¥» P(z, w)
— (_1)k1+...+kn—1D;rlll+k1 . D2n+knp(z’w)

= (_1)k1++kn—1 fm’k(z — Q_U—)
|z — wnt2mi+2k]

where fm K is a homogeneous polynomial of degree 1+ |m| + |k|. Thus,

S . .
~ lz — w,n+|m[+|k|——1

(2.2) D™ DX P(z, w)

Let D = D,, denote the differentiation with respect to the last com-
ponent. Then we define the fractional derivative of the extended Poisson
kernel of order s for s > 0 as follows: If s is a nonnegative integer, then

DSP,(w) = D*P,(w).
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If s is not a nonnegative integer, then
D°P,(w) =

1 /°° [s]=s—1
e tisl=s=1plsl p, (W', wy, + 1) dt,
MG =9 Jo (W un +1)

where I is a gamma function and [s] is the smallest integer greater than
or equal to s. In this case, we know from (2.2) that the above integral
always makes sense, because [s] —s—1> —1 and n+s > 1. We get the

idea of this fractional derivative from [1].
Let 8 > —1 and let

Ro(z,w) = —D1P, (w)
Cp
on H x H, where

C(CnB(g 1) [ 4lA=f
23 O =T A D /0 @+ P

Then it is shown in [2] that R, (z,w) is the weighted harmonic Bergman
kernel for b2 and that for 8 > «, Rg(z, w) reproduces all functions in b5
for every range 1 < p < 00, i.e., for 1 <p< oo, u€bh, z€ H,

(2.4) u(z) = /H w(w)Rs(z, w) dVs(w)

whenever 8 > «. Furthermore it is also shown in [2] that for a > —1,
1 <p<oo,

(2.5) lullzz ~ 20Dl

as u ranges over all bh-functions. In other words, the weighted Bergman
norm is equivalent to the weighted normal derivative norm. (See [2] for
details and related facts.)

The following lemma is used to estimate the size of some integrals
that appear in the course of proofs.

LEMMA 2. Forb <0, a+b> —1, we have

a+b b
Jo s

for every z,w € H.
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ProoF. Using polar coordinates centered at 2/ on R, we have
a+b
/ | 2 — w|n+a
a+b ,
= dw' dw
/ /Rn 1 z _w/|2+(zn+wn) )(n+a)/2 n

a+b

Wn dr dw
/ / Zn + w ))n+a n

zn+wn a+b 00 pOO wa+b

< — 0 ___drdw dr dw
~ / / Zn + 'lUn)n+a " ,/0 ‘/zn"l'wn Ta+2 "
a+b
< —  —dw
~ /0 (2n + wn)a+1 "

Zn ,wa+b oo b1 b
< /0 pres dwy, + / w, T dwp, S 2.
Zn

The proof is complete. O

N

Now we estimate the size of derivatives of Rg(z,w).

LEMMA 3. Let 8 > —1. Then for multi-indices m and k,

1
m nk <

for z,w € H.

PRrOOF. If (3 is a nonnegative integer, then we get the desired result
from (2.2). Assume that 3 is not an integer. Then note from (2.2) that

|DPDYEDVHLP (2, (!, wy + 1) | S |2 — (!, —(wq + ¢)) | CHAHmIAD
and note also that

|z — (W', —(wn + 1)) | = |z — W] + ¢
for z,w € H and for ¢t > 0. Thus,

o0
|D* D Ra(2, w)| 5/ |D®™DEDEFLP (2, (w', w, + 1)) | 81751 d
0

o0 $18l-6-1

,S/ — dt
o (|z — | + tyntBl+Iml+TK]

N 1

~ |z — wintB+mI+K]?

where we used change of variable ¢ — |z — wW|t. This completes the
proof. 1
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Define II on the weighted Lebesgue space L%, by

wg+1

Hf(z)=/}1f(w)ma—+1dw,

for each f € L%, and for every z € H. Then we show in the following
lemma II is bounded on LZ,.

LEMMA 4. Let o > —1 and let 1 < p < oo. Then II is bounded on
L%.
PROOF. If p = 1, then we see from Lemma 2 that for f € L},

za
Mflzy < [ V)l [ iy de i i

< /H |F(w)hwg e+ dw

= £l

Let 1 < p < 00, f € L%, and let g denote the index conjugate to p. Choose
a real number s satisfying both —(1+a)/p < s < 0and —(2+a)/q <s.
Then after applying Holder’s inequality to the following two functions

wg-}—l—ps 1/p wg+1+qs 1/q
GO W reres ) B T omper )

we see from Lemma 2 that

watl
M < [ 1P du
a+1 —sp a+1+sq 1/q
(/ |f(w w|n+a+1 ) (/ |Z_w|n+a+1 w)
wot—sp 1/p
(/ |f(w w|n+a+1 dw) ’

because o + 1+ sqg > —1 and sq < 0. After applying Lemma 2 once

again, we see that

zzH—sp

!Hf”LP N/ |f(w |pwa+1 P ded’w

S I£IE,,
because a+sp > —1 and sp—1 < 0. Therefore the proof is complete. [J

Before we prove the main theorem, we show one more lemma.
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LEMMA 5. Let « > —1,1 < p < oc and let u € b5, (H). Then for each
j=1,...,n,
lzn Djull e < llull 2z

ProOF. We know from (2.4) with 8 = a4+ 1 that

u(z)z/Hu(w)RaH(z,w)ng dw

for z € H. Differentiating through the integral above, we see that for
each 7,

zZnDju(z) =/ w(w)zn[Dy; Rot1(2, w)] wett d.
H
Notice from Lemma 3 that

Zn 1
|2n Dz Rat1(z, )| S |z — wjntate < [z —@rretl

Thus for each j,

wa+1
5Dyl 5 | )|y du.

Therefore the desired result follows directly from Lemma 4 and the proof
is complete. O

3. Proof of Theorem 1

For each j=1,...,n— 1 and for every z € H, set
Cat1 JH

Uj(z) = u(w)ijRa(zaw) wgﬂ—l dw,

where C,, is a constant given in (2.3). Then by passing the Lapla-
cian through the integral above, we see that each v; is harmonic on H.
Assume that « is not an integer. Note that for each j and for every
z,weH,

o0
Dy, Ra(z,w) = Ci / [Du, DIEIFLP, (W', wy, + )] =0 it
a JO

= _i [DZ»D1[31+1PZ(w',wn + t)] ¢loel—o=1 gy
Ca 0 7 n

= —D,, Ro(2,w).
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Fix z€ H. Then foreach 1 <j, k<n-—1,

Ca

Drvi(z) = —
kv (7) Co+1 JH
__ G / w(w)[Dy, Dy, Ra(z,w)] wit! dw
Co+1 Ju

= Djvk(z).
Because [a] —a=[a+ 1] — (a+ 1),

CoDy, Ro(z,w) = Cay1Ras1(z,w).

Therefore we see from (2.4) that for each j,

u(w)[Dszija(z, w)] wg"'l dw

Dpvj(2) = — Ca uw(w)[D,, Dy, Ra (2, w)] w&t dw
Ca-{-l H !
= [ 50D, R (ay0)] w3 d
= Dju(2).
Clearly,
(3.1)
n—1 Ca ot
ZDjvj(z) + Dpu(z) = w(w)A,Ry(z,w) wo™ dw = 0.
= Cat1 Ju
This shows that v1,...,vn_1,u satisfy the generalized Cauchy-Riemann
equations. Thus (v1,...,vn-1) is a conjugate system of w.
Note that
a+1
lvi(2)] < / |u(w lz _ w|n+a+1 dw.

Then we get from Lemma 4 that [jv;|» < ||lullz» for each j. Hence,

> llvjllze, S lellze-
For the other inequality, we get from (2.5) and (3.1) that
lullz ~ llznDpullrz = [|2n (=D Djvi)|| 2 < D l2aDijvjliz-
Because v; € b, we see from Lemma 5 that for each j,
lznDjvjll e S vjllrz-

Therefore we get

lullzz < lvilzz.
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Consequently, we have

n—1
lullzz ~ > sz
i=1

For the uniqueness, suppose that (u1,...,u,—1) is also a conjugate
system of u satisfying u; € b5 (H) for each j. Then by (2.5), we obtain

lv; = ujllzz = llznDn(v; — uj)ll Lz = llzaDj(u — u)l Lz = 0.
Thus, v; = u; for each j and this completes the proof of the case that «
is not an integer.

If o is an integer, then we get the desired result, similarly (much
easier than the previous case). Therefore the proof is complete. O
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