• Title/Summary/Keyword: H-closed space

Search Result 106, Processing Time 0.025 seconds

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF

H-Closed Spaces and W-Lindelöf Spaces

  • Park, Jong-Suh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 1988
  • We introduce the concept of a w-Lindel$\ddot{o}$f space which is a more general concept than that of a Lindel$\ddot{o}$f spaces. We obtain some characterization about H-closed sapces and w-Lindel$\ddot{o}$f spaces. Also, we investigate their invariance properties.

  • PDF

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.

ON THE CLOSED RANGE COMPOSITION AND WEIGHTED COMPOSITION OPERATORS

  • Keshavarzi, Hamzeh;Khani-Robati, Bahram
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.217-227
    • /
    • 2020
  • Let ψ be an analytic function on 𝔻, the unit disc in the complex plane, and φ be an analytic self-map of 𝔻. Let 𝓑 be a Banach space of functions analytic on 𝔻. The weighted composition operator Wφ,ψ on 𝓑 is defined as Wφ,ψf = ψf ◦ φ, and the composition operator Cφ defined by Cφf = f ◦ φ for f ∈ 𝓑. Consider α > -1 and 1 ≤ p < ∞. In this paper, we prove that if φ ∈ H(𝔻), then Cφ has closed range on any weighted Dirichlet space 𝒟α if and only if φ(𝔻) satisfies the reverse Carleson condition. Also, we investigate the closed rangeness of weighted composition operators on the weighted Bergman space Apα.

TOPOLOGICAL ENTROPY OF EXPANSIVE FLOW ON TVS-CONE METRIC SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.259-269
    • /
    • 2021
  • We shall study the following. Let 𝜙 be an expansive flow on a compact TVS-cone metric space (X, d). First, we give some equivalent ways of defining expansiveness. Second, we show that expansiveness is conjugate invariance. Finally, we prove that lim sup ${\frac{1}{t}}$ log v(t) ≤ h(𝜙), where v(t) denotes the number of closed orbits of 𝜙 with a period 𝜏 ∈ [0, t] and h(𝜙) denotes the topological entropy. Remark that in 1972, R. Bowen and P. Walters had proved this three statements for an expansive flow on a compact metric space [?].

SOME FIXED POINTTHEOREMS ON H-SPACES(I)

  • Lee, Byung-Soo;Lee, Sang-Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.325-330
    • /
    • 1995
  • In this paper we obtain some fixed point theorems on H-spaces by using H-KKM theorems.

  • PDF

ON A DECOMPOSITION OF MINIMAL COISOMETRIC EXTENSIONS

  • Park, Kun-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.847-852
    • /
    • 1994
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operator on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the ultraweak operator topology on $L(H)$.

  • PDF

HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES OVER $\mathcal{C}$Hn AND THE COMPLEX HEISENBERG GROUPS

  • Choi, Young-Gi;Lee, Kyung-Bai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.733-743
    • /
    • 2012
  • For the "Hopf bundle" $S^1{\rightarrow}S^{2n,1}{\rightarrow}\mathbb{C}H^n$, horizontal lifts of simple closed curves are studied. Let ${\gamma}$ be a piecewise smooth, simple closed curve on a complete totally geodesic surface $S$ in the base space. Then the holonomy displacement along ${\gamma}$ is given by $$V({\gamma})=e^{{\lambda}A({\gamma})i}$$ where $A({\gamma})$ is the area of the region on the surface $S$ surrounded by ${\gamma}$; ${\lambda}=1/2$ or 0 depending on whether $S$ is a complex submanifold or not. We also carry out a similar investigation for the complex Heisenberg group $\mathbb{R}{\rightarrow}\mathcal{H}^{2n+1}{\rightarrow}\mathbb{C}^n$.

HOLOMORPHIC EMBEDDINGS OF STEIN SPACES IN INFINITE-DIMENSIONAL PROJECTIVE SPACES

  • BALLICO E.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.129-134
    • /
    • 2005
  • Lpt X be a reduced Stein space and L a holomorphic line bundle on X. L is spanned by its global sections and the associated holomorphic map $h_L\;:\;X{\to}P(H^0(X, L)^{\ast})$ is an embedding. Choose any locally convex vector topology ${\tau}\;on\;H^0(X, L)^{\ast}$ stronger than the weak-topology. Here we prove that $h_L(X)$ is sequentially closed in $P(H^0(X, L)^{\ast})$ and arithmetically Cohen -Macaulay. i.e. for all integers $k{\ge}1$ the restriction map ${\rho}_k\;:\;H^0(P(H^0(X, L)^{\ast}),\;O_{P(H^0(X, L)^{\ast})}(k)){\to}H^0(h_L(X),O_{hL_(X)}(k)){\cong}H^0(X, L^{\otimes{k}})$ is surjective.