Abstract
We shall study the following. Let 𝜙 be an expansive flow on a compact TVS-cone metric space (X, d). First, we give some equivalent ways of defining expansiveness. Second, we show that expansiveness is conjugate invariance. Finally, we prove that lim sup ${\frac{1}{t}}$ log v(t) ≤ h(𝜙), where v(t) denotes the number of closed orbits of 𝜙 with a period 𝜏 ∈ [0, t] and h(𝜙) denotes the topological entropy. Remark that in 1972, R. Bowen and P. Walters had proved this three statements for an expansive flow on a compact metric space [?].