DOI QR코드

DOI QR Code

THE ENUMERATION OF INVOLUTIONS OF DOUBLY ALTERNATING BAXTER PERMUTATIONS

  • MIN, SOOK (Division of Software Yonsei University)
  • Received : 2021.05.25
  • Accepted : 2021.07.22
  • Published : 2021.08.15

Abstract

In this paper, we provide a recursive formula for the number of involutions of doubly alternating Baxter permutations in Sn.

Keywords

References

  1. G. Baxter, On fixed points of the composite of commuting functions, Proc. Amer. Math. Soc., 15 (1964), 851-855. https://doi.org/10.1090/S0002-9939-1964-0184217-8
  2. F. R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., and M. Kleiman, The number of Baxter permutations, J. Combin. Theory Ser. A., 24 (1978), 382-394. https://doi.org/10.1016/0097-3165(78)90068-7
  3. B. R. Cori, S. Dulucq, and G. Viennot, Shuffle of parenthesis systems and Baxter permutations, J. Combin. Theory Ser. A., 43 (1986), 1-22. https://doi.org/10.1016/0097-3165(86)90018-X
  4. O. Guibert and S. Linusson, Doubly alternating Baxter permutations are Catalan, Discrete Math., 217 (2000), 157-166. https://doi.org/10.1016/S0012-365X(99)00261-7
  5. S. Min, On the essential sets of the Baxter and pseudoBaxter permutations, PhD thesis, Yonsei University, 2002.
  6. S. Min and S. Park, The enumeration of doubly alternating Baxter permutations, J. Korean Math. Soc., 43 (2006), 553-561. https://doi.org/10.4134/JKMS.2006.43.3.553