• 제목/요약/키워드: Guidance Performance

검색결과 739건 처리시간 0.024초

Design of Public Transportation Route Guidance System for Wheelchair Users Utilizing Public Data of Seoul City

  • Geumbi, Lee;Humberto, Villalta;Seunghyun, Kim;Kisu, Kim;Jaehyeong, Go;Yongjoo, Jun;Kwang Sik, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.97-112
    • /
    • 2023
  • The purpose of this study is to design and test a new way of public transportation route guidance system for persons with disabilities, including wheelchair users. The guidance system is smartphone app-based, using, routes that involve disabled-friendly facilities in the vicinity can be searched. A database that contains publicly available data on low-floor bus services, location and extent of disabled-friendly facilities, and suitable subways and stations, was developed for this purpose. The app uses the database to access and query the required information. A pilot study was conducted to test the effectiveness of the guidance system. It was found that the system was able to convey information about the disabled-friendly routes and related guidance information even inside subway stations, effectively. The performance of the system was compared with route guidance services that do not explicitly use data on disabled-friendly services. A notable difference was observed in the travel time estimated by this program and other guidance services. The difference was around 4 to 15 minutes. This is significant savings for persons with disabilities if they use the app and service. The study thus shows that exclusive use of disabled-friendly data in route guidance will bring more benefits for persons with disabilities.

A Novel Range Estimator for Surface to Air Missile with Closing Velocity Measurements

  • Ra, W.S.;Whang, I.H.;Lee, J.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1822-1825
    • /
    • 2003
  • A practical range estimator based on the robust Kalman filter is proposed to solve the range estimation problem for surface to air missile(SAM) homing guidance. Apart from the previous works based on the extended Kalman filter(EKF) with bearing only measurement, the proposed scheme makes use of line-of-sight(LOS) rate to ensure the fast convergency at long-range. In this reason, the robust Kalman filter is considered to deal with LOS rate measurement error. The recursive linear structure of proposed filter is easy to implement and make it possible to reduce computational burdens. Moreover, it shows good estimation performance without specific guidance law such as oscillation proportional navigation guidance(OPNG).

  • PDF

Game Optimal Receding Horizon Guidance Laws and Its Equivalence to Receding Horizon Guidance Laws

  • Park, Jae-Weon;Kim, Ki-Baek
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.770-775
    • /
    • 2002
  • In this paper, a game optimal receding horizon guidance law (GRHG) is proposed, which does not use information of the time-to-go and target maneuvers. It is shown that by adjusting design parameters appropriately, the proposed GRHG is identical to the existing receding horizon guidance law (RHG), which can intercept the target by keeping the relative vertical separation less than the given value, within which the warhead of the missile is detonated, after the appropriately selected time in the presence of arbitrary target maneuvers and initial relative vertical separation rates between the target and missile. Through a simulation study, the performance of the GRHG is illustrated and compared with that of the existing optimal guidance law (OGL).

Real-time midcourse guidance with consideration of the impact condition

  • Song, Eun-Jung;Joh, Mi-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.26-36
    • /
    • 2003
  • The objective of this study is to enhance neural-network guidance to consider the impact condition. The optimal impact condition in this study is defined as an head-on attack. Missile impact-angle error, which is a measure of the degree to which the missile is not steering for a head-on attack, can also have an influence on the final miss distance. Therefore midcourse guidance is used to navigate the missile, reducing the deviation angle from head on, given some constraints on the missile g performance. A coordinate transformation is introduced to simplify the three-dimensional guidance law and, consequently, to reduce training data. Computer simulation results show that the neural-network guidance law with the coordinate transformation reduces impact-angle errors effectively.

직접식 관성유도시스템의 성능 분석 (Performance analysis of an explicit guidance system)

  • 최재원;윤용중;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.419-424
    • /
    • 1991
  • In this paper, a fuel minimizing closed loop explicit inertial guidance algorithm for the orbit injection of a rocket is developed. In this formulation, the fuel burning rate and magnitude of thrust are assumed constant, and the motion of a rocket is assumed to be subject to the average inverse-square gravity, but with negligible atmospheric effects. The optimum thrust angle for obtaining the given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vectors is determined by using Pontryagin's Maximum Principle. To establish the real time processing, many algorithms of the onboard guidance software are simplified. Simulations for the explicit guidance algorithm, for the 2nd-stage flight of the N-1 rocket, are carried out. The results show that the guidance algorithm works well in the presence of the maximum .+-.10 % initial velocity and altitude error. The effects of the guidance cycle time is also examined.

  • PDF

기동표적에 대한 슬라이딩 모드 유도법칙을 이용한 미사일 강인유도 (Robust Guidance of Missile Against Maneuvering Target Based on Sliding-Mode Guidance Law)

  • 이점효;김경중;김은태;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.122-125
    • /
    • 2002
  • The optimal guidance has advantages of accuracy and economic energy consumption but it is difficult to implement due to its dependence on the target information such as the relative range, the relative velocity and the acceleration of target. This paper uses optimal guidance and sliding-mode guidance to obtain a new guidance method. The suggested method shows robustness against target maneuvers, good dynamic performance, energy saving of missile and terminal accuracy. Its effectiveness is demonstrated by the simulation results.

  • PDF

Guidance Synthesis to Control Impact Angle and Time

  • Shin, Hyo-Sang;Lee, Jin-Ik;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.129-136
    • /
    • 2006
  • A new guidance synthesis for anti-ship missiles to control impact angle and impact time is proposed in this paper. The flight vehicle is assumed as a 1st order lag system to consider more practical system. The proposed guidance synthesis enhances the survivability of anti-ship missiles because multiple anti-ship missiles with the proposed synthesis can hit the target simultaneously. The control input to satisfy constraints of zero miss distance and impact angle, and the feedforward bias control input to control impact time constitute the guidance law. The former is from trajectory shaping guidance, the latter is from neural network. And particle swarm optimization method is introduced to furnish reference input and output for learning in neural network. The performance of the proposed synthesis in the accuracy of impact time and angle is validated by numerical examples.

초기 헤딩오차 민감도 완화 호밍 유도법칙 (Homing Guidance Law for Alleviating Sensitivity to Initial Heading Errors)

  • 이진익;전인수
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper, a new guidance law to reduce sensitivity to the initial heading errors is proposed. In order for shaping the input weights over the flight, we introduce the distribution functions expressed in terms of time-to-go and its inverse term. By applying the optimal control theory with the synthesized weights, the homing guidance law is derived. Also the characteristics of the proposed law are examined. Various computer simulations show the good performance of the proposed guidance.

GUIDANCE LAW FOR IMPACT TIME AND ANGLE CONTROL WITH CONTROL COMMAND RESHAPING

  • LEE, JIN-IK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.271-287
    • /
    • 2015
  • In this article, a more generalized form of the impact time and angle control guidance law is proposed based on the linear quadratic optimal control methodology. For the purpose on controlling an additional constraint such as the impact time, we introduce an additional state variable that is defined to be the jerk (acceleration rate). Additionally, in order to provide an additional degree of freedom in choosing the guidance gains, the performance index that minimizes the control energy weighted by an arbitrary order of time-to-go is considered in this work. First, the generalized form of the impact angle control guidance law with an additional term which is used for the impact time control is derived. And then, we also determine the additional term in order to achieve the desired impact time. Through numbers of numerical simulations, we investigate the superiority of the proposed guidance law compared to previous guidance laws. In addition, a salvo attack scenario with multiple missile systems is also demonstrated.

OPTIMAL IMPACT ANGLE CONSTRAINED GUIDANCE WITH THE SEEKER'S LOCK-ON CONDITION

  • PARK, BONG-GYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.289-303
    • /
    • 2015
  • In this paper, an optimal guidance law with terminal angle constraint considering the seeker's lock-on condition, in which the target is located within the field-of-view (FOV) and detection range limits at the end of the midcourse phase, is proposed. The optimal solution is obtained by solving an optimal control problem minimizing the energy cost function weighted by a power of range-to-go subject to the terminal constraints, which can shape the guidance commands and the missile trajectories adjusting guidance gains of the weighting function. The proposed guidance law can be applied to both of the midcourse and terminal phases by setting the desired relative range and look angle to the final interception conditions. The performance of the proposed guidance law is analyzed through nonlinear simulations for various engagement conditions.