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Abstract: A practical range estimator based on the robust Kalman filter is proposed to solve the range estimation problem

for surface to air missile(SAM) homing guidance. Apart from the previous works based on the extended Kalman filter(EKF)

with bearing only measurement, the proposed scheme makes use of line-of-sight(LOS) rate to ensure the fast convergency at

long-range. In this reason, the robust Kalman filter is considered to deal with LOS rate measurement error. The recursive linear

structure of proposed filter is easy to implement and make it possible to reduce computational burdens. Moreover, it shows

good estimation performance without specific guidance law such as oscillation proportional navigation guidance(OPNG).
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1. Introduction
The objective of range estimation is to extract the range

between the missile and the moving target from available

information such as line-of-sight(LOS) angle. This kind of

problem is often called passive ranging. During the last

decades, there are many attempts to solve the passive rang-

ing problem based on the extended Kalman filter(EKF) or

modified gain EKF(MGEKF) [1][2][3]. However, nowadays,

it is very well known that there exist bias errors in range es-

timates caused by a correlation between the EKF gain and

its innovation sequence [4]. As well, it should be pointed

out that the bearing only passive ranging filter cannot avoid

lack of observability with conventional proportional naviga-

tion guidance(PNG) law. Making an alternative solution,

most studies have been concentrated on the development of

unbiased EKF and design of irregular homing guidance law

to generate a homing trajectory which guarantees high ob-

servability condition [5]. But, the passive ranging algorithm

based on bearing only measurements cannot be free from the

slow convergency problem in long range situation.

Figure 1 gives an insight to us about the essence of passive

ranging. As shown in the figure, more accurate range in-

formation, that is, less range uncertainty, ∆r, is obtained

as the missile takes farther angular position, ∆λ. It means

that, in order to get a good range information at long range,

missile has to move longer arc range. This property makes a

bearing only passive ranging filter has bad convergency char-

acteristics such as long setting time or even divergence of the

filter. In general, the air defense missile has quite short en-

gagement time within several minutes and follows optimal

trajectory to maximize final velocity. Therefore, there may

be no opportunity gathering the good range information by

using the above manner. Also, using the specific oscillation

proportional guidance causes serious aerodynamic drag force

and results loss of energy at homing phase. In this reasons,

the long setting time is a critical disadvantage for air defense

missile. And it is necessary to design the range estimator

having fast conversance characteristics.

To solve the inherent problem of conventional passive rang-

ing filter, we propose a new range estimator which exploits

Fig. 1. Observability in Passive Ranging Problem

the fact that the closing velocity mismatch can be expressed

by the multiplication of the range and LOS rate. Since the

LOS rate can be easily magnified by increasing the missile

velocity perpendicular to LOS vector, it guarantees fast con-

vergency at long-range. At this point, it should be noted that

the LOS rate measurements are contaminated by various er-

ror sources. To tackle the LOS rate measurement errors, the

linear robust Kalman filter is applied. The conventional EKF

not only adopt higher order kinematic model to describe full

relative geometry but also requires approximations to han-

dle the nonlinearity between polar coordinates and cartesian

coordinates [6]. On the other hand, the proposed filter can

be constructed with only two states and take benefit of the

linearity of measurement equation. The proposed filter re-

quires minimal computational efforts for its simple structure.

In addition, it is possible to ensure the reliability for real ap-

plication.

The arrangement of the paper is as follows : Section 2 in-

troduces a simple kinematics in polar coordinates. In Sec-

tion 3, it is shown that the range estimation problem can

be formulated as the robust filter design problem for uncer-

tain system. Also, by using the Krein space Kalman filter,

a new range estimator is proposed. In addition, an adapta-

tion algorithm is also proposed to eliminate bias in LOS rate

measurements. Section 4 is devoted to certification of the



range estimation performance and robustness against LOS

rate measurement uncertainties of the proposed filter. To do

this, the typical homing scenario is considered. Finally, the

conclusions are stated in Section 5.

2. Range Kinematics in Polar Coordinates
Here, the kinematic relation for range estimation problem is

formulated. To do this, the engagement scenario depicted in

figure 2 is considered. Let’s define the inertial position and

velocity represented in the LOS frame as follows :
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According to the Corilois’ law, one can obtain the equations.
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Substituting the eq. (4) for eq. (5) and considering only the

components for LOS direction results the following range

kinematic equation.[
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where it is defined that ω2 = ω2
y + ω2

z and ac = at
c − am

c . In

many cases, range estimation problem does not take the tar-

get maneuver into account. Therefore, the constant velocity

target model, at
c ≈ 0, is used without loss of generality.

The high pulse repetition frequency(PRF) seeker provides

doppler frequency fd, and doppler frequency mismatch ∆fd.

These parameters are closely related to the closing velocity

and its difference as bellow

vc(k) = −λ

2
fd(k), (7)

vc(k) − vc(k − 1)

T
= − λ

2T
∆fd(k) (8)

where λ is the wavelength of transmitted signal from seeker

and T means sampling time.

Now, rearranging the eq. (6), one gets discrete time state

space realization for range kinematics in LOS frame.{
xk+1 = Fkxk + Gkwk + uk

yk = Hkxk + vk
(9)

Fig. 2. Engagement Geometry

where we have defined that

F =
[

1
]
, G =

[
T

]
, H =

[
ω2

]
x = r, y = −λ∆fd

2T
+am

c , u = Tvc.

In the above equation (9), the process noise wk and mea-

surement noise vk are assumed that the zero mean white

noise with variances Q and R. The the missile acceleration

am
c can be measured by the inertial navigation unit mounted

on the missile, and the LOS rate ω can be measured from

seeker. Hence, the range estimation problem can be summa-

rized as the Kalman filtering problem to the range kinematic

equation (9) derived in polar coordinates.

3. Robust Kalman Range Estimator
As mentioned above, the range estimator can be designed

by using the linear robust Kalman filter(RKF) [7]. Apart

from the previous approach to the problem, in our setting, a

linear measurement equations is carefully deliberated. The

multiplication of squares of LOS rate ω and range r should

be estimated makes up the measurement equation. Unfor-

tunately, the measured LOS rate contains many undesirable

error sources such as gyro bias, thermal noise in electronic

devices in seeker hardware and target glint noise and so

on. These error sources have time-varying, range dependant

nature hence it cannot be predicted by off-line processing.

Moreover, it affects the measurements directly and results

bias errors in range estimates. To overcome this situation, a

specific filtering scheme is used to handle the LOS rate mea-

surement errors. This is the reason why one must consider

the robust Kalman filter algorithm to tackle the robustness

issue against measurement uncertainty. Before preceding, it

should be pointed out that the LOS rate measurement errors

are energy bounded so it can be modelled by using the norm

bounded uncertainty.

ω̃2 = (ω + δω)2, ‖δω‖ ≤ α (10)

where ω̃ and δω represent measured LOS rate and LOS rate

uncertainty, respectively. In addition, α is the given norm

bound of LOS rate uncertainty. To replace the true LOS rate

ω in the measurement matrix to the available information ω̃,

eq. (10) should be modified.

ω2 = ω̃2 − 2ω̃δω + δω2 (11)

To apply the robust Kalman filter, the upper bound of

squares of the LOS rate is adopted hereafter.

ω2 ≤ ω̃2 + α2 − 2ω̃δω (12)



Table 1. Robust Kalman Filter
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Now, the linear measurement equation in (9) can be con-

verted as bellow by using eq. (12).

yk =
[

Hk+δHk

]
xk + vk. (13)

where

Hk = ω̃2
k + α2, δHk = −2ω̃kδωk.

The parametric uncertainty in measurement matrix, δωk can

be rewritten by using the norm bounded uncertainty ∆k.

yk =
[

Hk+Ek∆kKk

]
xk + vk, ‖∆k‖ = 1. (14)

The time invariant matrices E and K chosen by the designer

hold E · K = −2ω̃α from eqs (10) and (14).

From the above results, we can conclude that the range esti-

mation problem is just the robust Kalman filter design prob-

lem in table 1. Consequently, the robust range estimator can

be readily obtained as in eq. (15).

x̂k = (I + PkKT K)x̃k + PkHT
k R̃−1(yk − Hkx̃k), (15)

x̃k = F x̂k−1

where a posteriori estimation error covariance matrix Pk sat-

isfies the Riccati recursion.

P−1
k+1 = (FPkF T + GQGT )−1 + HT

k R̃−1Hk − KT K

At this point, it should be noted that the proposed range es-

timator takes only one state and measurement. That is, we

are able to implement the range estimator in real time with-

out computational burdens. In addition, the minimal order

of range filter allows us to eliminate unexpected behaviors

of the filter.

Table 2. Simulation Condition

Subsystem Assumption

LOS meas. error : σ = 0.1◦

LOS rate meas. error : σ = 0.1◦/sec

Seeker fd meas. error : σ = 5KHz

∆fd meas. error : σ = 0.5KHz

wavelength : λ = 20mm

navigation constant : N = 3

Missile OPNG : ac = −Nvcω +10 sin(0.4 ·π · tgo)

missile velocity : vm = 700m/sec

Target position : �rm = [ 20 0 ]Km

velocity : vt = [ − 300 0 ]m/sec

T = 0.025

RKF Q = (T · 0.1)2, R = 0.52

x̃0 = 30Km, P̃0 = 9 · 102Km2

4. Simulation Result
In this section, the convergency and estimation performance

of the proposed filter are investigated via a simple 2-D hom-

ing scenario. Table 2 shows the parameters used in the sim-

ulation. To verify the performance improvement of the pro-

posed method, the conventional passive ranging filter based

on EKF is compared.

Figure 3 shows the estimation results after 200 Monte-Carlo

runs when the missile is guided by using the conventional PN

guidance law with initial heading γm = 20◦. The proposed

range estimator provides good convergency characteristics

but the EKF cannot ensure the convergency in such case.

Moreover, the EKF may diverge in certain cases. Figure 4

gives support to mathematical outcomes in [4]. There are

bias errors in EKF estimates. Also the EKF cannot give

the reliability to us due to the large deviations of estimates.

In the contrast, the proposed filter has negligible bias errors

and very small deviations.

In the figure 5, we can see the estimation performances of

the proposed filter for somewhat different observability con-

ditions. The RMS errors of the proposed filter is in inverse

proportion to the initial heading error. It means that if there

are insufficient changes of LOS rate, the proposed filter might

be faces with bad observability conditions. But even that

case, the estimation performance of RKF is superior to that

of EKF. Fortunately, the initial heading error is quite large in

medium range air defense missile hence the proposed scheme

is adequate for SAM applications.

It is very well known that we can obtain better estimation

performance of EKF by using the OPNG. As mentioned in

the figure 1, the utilization of LOS rate can easily provides

good observability condition for us. In this reason, although

we use the OPNG for missile homing, the range estimation

performance of proposed RKF is much better than the EKF

at long range as shown in the figure 6.
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Fig. 3. Engagement Trajectory

5. Conclusion
In this paper, a practical range estimator based on the robust

Kalman filter was proposed. It was shown that the proposed

scheme can be applied to the typical SAM scenario which re-

quires fast convergency characteristics. To do this, the LOS

rate measurements is used istead of bearing measurements.

Moreover, it can guarantee the operational confidency be-

cause the newly proposed range estimator can be easily im-

plemented by using first order linear robust Kalman filter

based on the simple kinematics.
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Fig. 4. Range Estimates with Conventional PNG
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Fig. 5. RMS Range Estimation Error with PNG
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Fig. 6. Range Estimates with OPNG
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