• Title/Summary/Keyword: Ground based simulation

Search Result 663, Processing Time 0.031 seconds

Evaluation of the Combat Aircraft Susceptibility Against Surface-Based Threat Using the Weighted Score Algorithm

  • Kim, Joo-Young;Kim, Jin-Young;Lee, Kyung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.396-402
    • /
    • 2011
  • Aircraft combat survivability is an essential factor in the design of combat aircrafts that operate in an enemy air defense area. The combat aircrafts will be confronted with anti-aircraft artillery and/or surface-to-air missiles (SAM) from the ground, and their survivability can be divided into two categories: susceptibility and vulnerability. This article studies the prediction of susceptibility in the case of a one-on-one engagement between the combat aircraft and a surface-based threat. The weighted score method is suggested for the prediction of susceptibility parameters, and Monte Carlo simulations are carried out to draw qualitative interpretation of the susceptibility characteristics of combat aircraft systems, such as the F-16 C/D, and the hypersonic aircraft, which is under development in the United States, versus ground threat from the SAM SA-10.

Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation

  • Kwon, Sun Yong;Yoo, Mintaek;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Korean society experienced successive earthquakes exceeding 5.0 magnitude in the past three years resulting in an increasing concern about earthquake stability of urban infrastructures. This study focuses on the significant aspects of earthquake risk assessment for the cut-and-cover underground railway station based on two-dimensional dynamic numerical analysis. Presented are features from a case study performed for the railway station in Seoul, South Korea. The PLAXIS2D was employed for numerical simulation and input of the earthquake ground motion was chosen from Pohang earthquake records (M5.4). The paper shows key aspects of earthquake risk for soil-structure system varying important parameters including embedded depth, supported ground information, and applied seismicity level, and then draws several meaningful conclusions from the analysis results such as seismic risk assessment.

Design Walking System Based on Theo Jansen Mechanism (얀센 메커니즘 기반의 보행 기구 설계)

  • Lee, Hyeonkyeong;Yun, Yungkyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.404-410
    • /
    • 2016
  • Compared to wheel locomotion, walking has many advantages : Better to cross over obstacles, the contact with ground is in a determined point, the ground is damaged less. Because Theo Jansen mechanism can make walking motion that is very soft, there are many researches about that mechanism. In this paper, We designed walking robot based on Theo Jansen mechanism. Most important design factor is velocity and stability. First of all, we considered kinematics knowledge and then, we made a new model by using simulation. Finally we developed the model by solving few design problems.

  • PDF

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

A Method of Computing the Frequency-Dependent Ground Impedance of Horizontally-buried Wires (수평으로 매설된 도선의 접지임피던스의 주파수의존성을 계산하는 기법)

  • Cho, Sung-Chul;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.745-752
    • /
    • 2016
  • The parameters of Debye's equation were applied to analyze the frequency-dependent ground impedance of horizontally-buried wires. We present a new method, based on Debye's equation, of analyzing the effect of polarization on frequency-dependent ground impedance. The frequency-dependent ground impedances of a horizontally-buried wire are directly measured and calculated by applying sinusoidal current in the frequency range of 100 Hz to 10 MHz. Also, the results obtained in this work were compared with the data calculated from empirical equations and commercial programs. A new methodology using the delta-gap source model is proposed in order to calculate frequency-dependent ground impedance when the ground current is injected at the middle-point of the horizontal ground electrode. The high frequency ground impedance of horizontal electrodes longer than 30 m is larger or equal to its low frequency ground resistance. Consequently, the frequency-dependent ground impedance simulated with the proposed method is in agreement with the experimental data, and the validity of the computational simulation approach is confirmed.

Improvement based on Jansen mechanism in moving vehicles and exploration equipment sector. (이동차량 및 탐사용 장비 분야에서 Jansen 메커니즘을 통하여 정숙성/굴곡지 형 이동성능 개선에 관한 연구)

  • Park, Minjae
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.516-517
    • /
    • 2016
  • I use Jansen mechanism to reduce the unnecessary motion of car body and improve the motion performance capability in the rugged terrain To reduce the unnecessary motion, the positional variation of a main body of vehicle should be minimized. In order to reduce the change of height and control the speed at every moment when vehicle move, 16 legs or more are installed on a crankshaft and the paths of leg motions need to be considered in the rugged terrain. The vehicle will be optimized so that it produces a sufficient speed and torque for practical use. Finally, I designed proper body with Edison simulation. The simulation is good for beginners of mechanism design.

  • PDF

Numerical Calculation for Grounding Impedance of a Horizontal Ground Electrode Based on the Electromagnetic Field Theory (전자계 이론을 기반으로 한 수평접지전극의 접지임피던스 수치계산)

  • Lee, Bok-Hee;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.76-83
    • /
    • 2014
  • This paper deals with the numerical method of calculating the frequency-dependent impedances of grounding electrodes. The proposed electromagnetic field approach is based on the solutions to Maxwell's equations obtained from the method of moment in the frequency domain. In order to evaluate the quality of the proposed simulation method, the frequency-dependent impedances of horizontally-buried ground electrodes were presented. The program for calculating the current distributions and impedances of grounding electrodes was implemented in MATLAB. The grounding impedances of two 10m and 50m long horizontal ground electrodes were measured and simulated in the frequency range from 100Hz to 10MHz for easy analysis and comparison. Also the simulated results were compared with those calculated from a sophisticated computer program CDEGS (HIFREQ module). As a result, the resultant results of frequency-dependent impedances obtained by using the numerical simulation method proposed in this work are in good agreement with experimental data. The validity of the approach techniques was confirmed.

Simulation of Blasting Demolition of Reinforced Concrete Structures and Ground Vibration using Finite Element Method (유한요소법을 이용한 구조물의 발파해체 붕괴거동 및 지반진동 모사에 관한 연구)

  • Choi, Joo-Hee;Jung, Jae-Woong;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.190-202
    • /
    • 2009
  • With the increasing demand for blasting demolition in urban areas, the simulation of structural collapse prior to the real blasting operation is a key process for ensuring the success and safety of the blasting demolition. The simulation of collapsing behavior of a structure is not only vital for preventing unexpected economic loss and casualties, but also helpful in minimizing public claims by precisely estimating the environmental impact resulting from the operation. This study proposes a new technique for simulation of a blast demolition using FEM based LS-DYNA codes. The technique tries to simplify the complex arrangement of reinforcing bars, and use the actual properties of the concrete and steel reinforcing bars, thereby improving the overall capability of the simulation to match well with the collapsing behavior of real-scale structures.

Analysis of doubly-fed induction generator based wind power system for voltage sag (배전선로 전압강하에 대한 이중 여자 풍력발전시스템 특성 해석)

  • Cha, Han-Ju;Lee, Sang-Hoey
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1234-1235
    • /
    • 2007
  • This paper represents the generating principles of the doubly-fed induction generator (DFIG) based wind power system and developes a simulation model of DFIG by using PSCAD/EMTDC. In addition, this paper analyzes the steady state operation and the transient operation during the voltage sags in the power common coupling. The voltage sags are occurred by three phase line-to-ground faults and full-voltage startup of an induction motor in the simulation.

  • PDF

Investigation of the Downwash Induced by Rotary Wings in Ground Effect

  • Tanabe, Yasutada;Saito, Shigeru;Ooyama, Naoko;Hiraoka, Katsumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 2009
  • There are concerns about the influence of the gust wind caused by helicopters affecting the moving vehicles while hovering over the road during rescue activities. For the understanding of such complicated flow. numerical simulation of a rotor hovering above the ground has been carried out, changing the rotor/ground clearances. The rotor thrust is kept constant. and the rotor control is determined by trim adjustments incorporated into the CFD algorithm. Collective pitch angle and the required power decreases with the rotor/ground clearance which agrees with experience. Changes of the flowfield near the rotor with regard to the rotor height are investigated based on the calculated results.