• Title/Summary/Keyword: Gouge

Search Result 73, Processing Time 0.023 seconds

Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field (한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석)

  • Cho, Hyeongseong;Kim, Min-Cheol;Kim, Hyeonjeong;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.75-103
    • /
    • 2014
  • The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stress field in and around Korean Peninsula. Using magnetic fabrics (AMS), we attempted to determine the slip senses of Jinti, Mohwa, Suseongji2, and Wangsan faults and then interpreted the fabric development process of fault gouge and the characteristics of stress field during the Quaternary. All the magnetic fabrics of the faults, except the Wangsan Fault, consistently indicate a dominant reverse-slip sense with weak strike-slip component. Most of the oblate fabrics are nearly parallel to the fault surface and the anisotropy degrees generally increase in proportion to the oblatenesses. These results suggest that the fabrics of the fault gouges resulted from a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. It is also interpreted that the pre-existing fabrics were overwhelmed and obliterated by the re-activated faulting. Paleostress field calculated from the fault slip data indicates an ENE-WNW compressive stress, which is in accord with those determined from previous fault tectonic analysis, focal mechanism solution, and hydraulic fracturing test in and around Korean Peninsula.

Identification of the Singal Fault Zone in the Kiheung Reservoir Area by Geotechnical Investigations (기흥저수지 지역의 지반조사를 통한 신갈단층대 확인)

  • Gwon, Sun-Dal;Kim, Sun-Kon;Lee, Soung-Han;Park, Kwon-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.295-306
    • /
    • 2012
  • In this study, the Singal fault zone in the Gyeonggi massif is identified in the Kiheung area. Geotechnical investigations were carried out to locate and characterize of the Singal fault zone in the Kiheung reservoir area. The N-S striking Shingal fault is known to be a Riedel-type strike-slip fault within the Choogaryung rift. Along the fault zone, 62 bore holes were drilled and electrical resistivity survey of about 11km, and vibroseis seismic refraction and reflection survey of about 500m were done. From the result of investigations, it is found that the fault zone, consisting mainly of gouge and breccia, has maximum width of 300 meters with anastomosing geometry of secondary fractures developed subparallel to the fault zone. We interpret these geometric features to be the result of structural development of flower-structure type at the restraining band of strike-slip fault. However, there are uncertainties of this interpretation because there are virtually no outcrops in the area. Further investigation to understand geometric features and linkage style of the fault zone.

Correlation Analysis between Weight Ratio and Shear Strength of Fault Materials using Multiple Regression Analysis (다중회귀분석을 이용한 단층물질의 무게비와 전단강도의 상관성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Soek;Kim, Woo-Seok;Na, Jong-Hwa;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.397-409
    • /
    • 2014
  • The appearance of faults during tunnel construction is often difficult to predict in terms of strike, dip, scale, and strength, even though this information is essential in determining the strength of the surrounding rock mass. However, the strength and rock mass classification of fault zones are generally determined empirically on the construction site. In this study, 109 specimens were collected from fault of nine area throughout Korea, and direct shear tests were conducted and the particle distribution was analyzed to better characterize the fault zones. Six multiple regression models were established, using 97 of the specimens, to analyze the correlation between the shear strengths and weight rations of these fault materials. A verification of the six models, using the remaining 12 specimens, shows that in all of the models the coefficient of determination yielded $R^2{\geq}0.60$, with two models yielding $R^2{\geq}0.69$. These results provide useful information for determining the shear strength of fault materials in future studies.

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests (실내시험을 통한 단층물질의 물리·역학적 특성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.

A Study on the Design of Telemedicine System Using Image Division Communication (영상분할 통신을 이용한 원격진료시스템의 설계에 관한 연구)

  • Joung, Ki-Bong;Oh, Moo-Song
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.287-292
    • /
    • 2002
  • In general cases, the conventional internet connected to a terrestrial network is transmit too large medical images. To overcome this low speed transmitting rate problem of the interned, we have studied about an image division communication system as a fast telemedicine system. The image division communication system was 5-10 times faster than the conventional terrestrial internet link. Also we have developed a Web-based telemedicine system that can access every permitted server of hospitals via the internet. Studied image division communication corrected problem of other reflex quality decline in erratic transmission of reflex by transmission speed imbalance that is problem of single communication techniques that used in existing reflex transmission. Also, could keep quality state of fixed reflex gouge abnormal transmission speed. Visual Basic and C++, ASP programming techniques were used to make our system and it can access and retrieve medical information and image through only public web browse such as internet explorer without additional specific tools. To increase the transmitting speed of our telemedicine system, JPEG method was used. In conclusion, we were able to develop a fast and public telemedicine system using the proposed image division communication system and Web technology. Image division communication system technology increased the speed of the conventional internet and Web technology extended the scope of use for telemedicine system from intrahospital to public use.

A Report for the Quaternary Gaegok 6 Fault Developed in the Mid-eastern Part of Ulsan Fault Zone, Korea (울산단층대 중동부에 발달하는 제4기 개곡 6단층에 대한 보고)

  • Ryoo, Chung-Ryul
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.635-643
    • /
    • 2009
  • In this paper, a Quaternary fault is described, which is developed in the mid-eastern part of Ulsan Fault Zone, near the southern Gaegok-ri, Oedong-eub, Gyeongju, Korea. The Gaegok 6 fault is developed along the contact between Early Tertiary granite and Quaternary gravel deposit overlying unconformably the granite. The fault strikes $N02^{\circ}{\sim}22^{\circ}E$ and dips $45^{\circ}{\sim}80^{\circ}$ to the west. This fault has a 30~50 cm wide cataclastic shear zone with gouge zone, mixed with Quaternary sediments and fault breccia of granite. In the main Quaternary fault plane, the orientation of striation is $17^{\circ}$, $356^{\circ}$, indicating a dextral strike-slip faulting with some normal component. There is another striation ($78^{\circ}$, $278^{\circ}$ and $43^{\circ}$, $270^{\circ}$) with reverse-slip sense, developed on the subsidiary plane which cuts the main Quaternary fault plane. In brief, the fault has been developed between the granite in the western part and the Quaternary gravel deposit in the eastern part. The western block of fault is uplifted. The striations and movement senses of faults indicate multiple compressional stages in this region. The fault has a similar orientation, westward dipping geometric pattern, and reverse sensed kinematic pattern with Gaegok 1 fault developed in the north. Thus, the Gaegok 6 fault is probably a southern extension of Gaegok 1 fault.

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Utilization of Induced Polarization and Electrical Resistivity for Identifying Rock Condition (유도분극 전하 충전성과 전기비저항을 활용한 암반 상태 파악 가능성 연구)

  • Park, Jinho;Ryu, Jinwoo;Jung, Jeehee;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.493-502
    • /
    • 2016
  • This study examines how rock condition affects the variation of the chargeability and electrical resistivity of the rock. In the theoretical study, the relationship correlating chargeability with the variables affecting it is derived. A parametric study utilizing the derived relationship reveals that the size of narrow pores ($r_1$) is the most influential factor on chargeability, and the salinity of pore water ($C_0$) is the second. In the laboratory experiments, small scale rock fracturing zone is modelled using sand stone. Chargeability and resistivity are measured by changing the size of the joint aperture, the location of fractured zone and the existence of clay gouge and/or clay layer which shows lower chargeability than the sand stone layer in the multi-layered ground. Test results show that chargeability is controlled not by the rock fracturing condition but by the size of narrow pore ($r_1$) where each line of current flow passes through. Also, the chargeability decreases with increase of the pore water salinity ($C_0$). In conclusion, the ground condition can be identified more efficiently by measuring the induced polarization along with the electrical resistivity; identifying the existence of sea water, the layered ground and/or the fractured rock becomes more reliable.

Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis (회귀분석을 이용한 경주·울산 지역에 분포하는 단층 핵의 전단강도 범위 설정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A fault is one of the critical factors that may lead to a possible ground collapse occurring in construction site. A fault core, however, possibly acting as a failure plane in whole fault zone, is composed of fractured rock and gouge nonuniformly distributed and thus can be characterized by its wide range of shear strength which is generally acquired by experimental method for stability analysis. In this study, we performed direct shear test and grain size distribution analysis for 62 fault core samples cropped from 12 different spots located in the vicinity of Kyongju and Ulsan, Korea. As a result, the range of shear strength representing the characteristics of fault cores in the study regions is determined with regard to vertical stress using a regression analysis for experiment data. The weight ratio of gravels in the samples is proportional to the shear strength and that of silt and clay is in inverse proportion to the shear strength. For most samples, the coefficient of determination is over 0.7 despite of inhomogeneity of them and consequently we determined the lower limit and upper limit of the shear strength with regard to the weight ratio by setting the confidence interval of 95%.

Characteristics of Large-Scale Fault Zone and Quaternary Fault Movement in Maegok-dong, Ulsan (울산 매곡동 일대의 대규모 단층대 특성과 제4기 단층운동)

  • Cho, Jin-Hyuck;Kim, Young-Seog;Gwon, Sehyeon;Edwards, Paul;Rezaei, Sowreh;Kim, Taehyung;Lim, Soon-Bok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.485-498
    • /
    • 2015
  • Structural analysis for a large-scale fault in Maegok-dong, Ulsan, was carried out based on filed-works to investigate the geometric and kinematic characteristics of the fault as well as its Quaternary slip. As results, a series of repeated stratigraphy, minor faults, fracture zones, and deformation band clusters are observed over a distance of about 100 m in the first studied site consisting of sedimentary rocks, which may indicate the damage zone of a large-scale fault in this site. In the second site, mainly composed of granitic clastic rocks, a large-scale thrust fault is expected based on low-angle dipping faults showing branched and/or merged patterns. Age of the last slip on this fault was restrained as after 33,275 ± 355 yr BP based on radiocarbon dating for organic material included in the gouge zone. Dimension of fault damage zone, dominant sense of slip, and age of the slip event associated with the fault suggest that these structures have a close relationship with the Ulsan Fault and/or Yeonil Tectonic Line, which are well-known large-scale neotectonic structural features around the study area. Therefore, it is necessary to study the characteristics of the faults in detail based on structural geology and paleoseismology in order to ensure seismic and geologic stability of the buildings under construction, and to prevent geologic hazards in this area.