DOI QR코드

DOI QR Code

Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field

한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석

  • Cho, Hyeongseong (Department of Geological Sciences, Pusan National University) ;
  • Kim, Min-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Kim, Hyeonjeong (Department of Geological Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University)
  • 조형성 (부산대학교 지질환경과학과) ;
  • 김민철 (부산대학교 지질환경과학과) ;
  • 김현정 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과)
  • Received : 2014.04.24
  • Accepted : 2014.05.12
  • Published : 2014.06.30

Abstract

The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stress field in and around Korean Peninsula. Using magnetic fabrics (AMS), we attempted to determine the slip senses of Jinti, Mohwa, Suseongji2, and Wangsan faults and then interpreted the fabric development process of fault gouge and the characteristics of stress field during the Quaternary. All the magnetic fabrics of the faults, except the Wangsan Fault, consistently indicate a dominant reverse-slip sense with weak strike-slip component. Most of the oblate fabrics are nearly parallel to the fault surface and the anisotropy degrees generally increase in proportion to the oblatenesses. These results suggest that the fabrics of the fault gouges resulted from a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. It is also interpreted that the pre-existing fabrics were overwhelmed and obliterated by the re-activated faulting. Paleostress field calculated from the fault slip data indicates an ENE-WNW compressive stress, which is in accord with those determined from previous fault tectonic analysis, focal mechanism solution, and hydraulic fracturing test in and around Korean Peninsula.

한반도 남동부 일원에는 주요 지질구조선(양산단층대, 울산단층, 연일구조선, 오천단층계 등)을 따라 제4기 단층들이 도처에 분포하고 있으며, 이들의 기하와 운동학적 특징은 한반도의 제4기 지각변형사와 현생응력상태 등을 이해하는 데 중요한 정보들을 제공한다. 이번 연구에서는 진티단층, 모화단층, 수성지2단층 그리고 왕산단층을 대상으로 대자율이방성 방법을 적용하여 단층가우지의 미세구조를 분석하고 단층의 운동감각을 해석하였으며, 그 결과를 바탕으로 단층암의 미세구조 발달과정과 제4기 응력장에 대해 논의하였다. 대자율이방성 측정을 통해 구해진 자기미세구조로부터 단층의 운동감각을 분석한 결과, 왕산단층을 제외한 나머지 세 단층은 모두 역이동성이 우세한 단층운동에 의한 미세구조가 발달되어 있다. 단층면에 거의 평행한 편평형의 미세구조가 발달하는 점과 이방성정도가 클수록 편평형의 정도가 증가하는 특징에 근거할 때, 단층가우지의 미세구조는 점진적인 변형에 의한 최종응력변형이 기록된 것으로 해석된다. 또한, 최후기에 재활된 역단층운동으로 기존의 단층가우지 내에 존재하는 미세구조들은 모두 지워지고 최후기의 운동에 의한 미세구조만이 기록된 것으로 판단된다. 단층가우지의 자기미세구조 분석을 통해 유추된 운동감각으로부터 구해진 고응력장은 동북동-서남서 방향의 압축력이며, 이 응력장은 지진원 메커니즘, 수압파쇄시험 그리고 단층 지구조분석결과를 통해 구해진 한반도 남동부의 고응력장과 부합된다. 결론적으로 한반도 일원은 제4기 동안 동-서 내지 동북동-서남서 방향의 압축성 응력장이 지배적이었던 것으로 해석된다.

Keywords

References

  1. Ashurkov, S.V., San'kov, V.A., Miroschnichenko, A.I., Lukhnev, A.V., Sorokin, A.P., Serov, M.A. and Byzov, L.M., 2011, GPS geodetic constrains on the kinematics of the Amurian Plate. Russian Geology and Geophysics, 52, 239-249. https://doi.org/10.1016/j.rgg.2010.12.017
  2. Astudillo, N., Roperch, P., Townley, B., Arriagada, C. and Maksaev, V., 2008, Importance of small-block rotatons in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit, Northern Chile. Tectonophysics, 450, 1-20. https://doi.org/10.1016/j.tecto.2007.12.008
  3. Back, J.J., Kyung, J.B. and Choi, H, 2011, Analysis on the source characteristics of the recent five-year earthquakes occurred in the central and western areas of the Korean Peninsula. Journal of Korean Earth Science Society, 32, 161-169 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.2.161
  4. Bae, S., Jeon, S., Kim, J. and Kim, J., 2008, Characteristics of the regional rock stress field at shallow depth in the Kyungsang Basin with in-situ rock stress measurement. Tunnel & Underground space, 18, 149-161.
  5. Balsley, J.R. and Buddington, A.F., 1960, Magnetic susceptibility anisotropy and fabric of some Adirondack granites and ortho-gneisses. American Journal of Science, 258-A, 6-20.
  6. Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystem, 4, doi:10.1029/2001GC000252.
  7. Borradaile, G.J. and Henry, B., 1997, Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42, 49-93. https://doi.org/10.1016/S0012-8252(96)00044-X
  8. Borradaile, G.J., 1988, Magnetic susceptibility, petrofabric and strain - a review. Tectonophysics, 206, 203-218.
  9. Bouchez, J.L., 1997, Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Granite: From Segregation of Melt to Emplacement Fabrics (eds. Bouchez, J.L., Hutton, D.H.W. and Stephens, W.E.), Kluwer Academic Publishers, Dordrecht, 95-112.
  10. Bradak, B. and Kovacs, J., 2014, Quaternary surface processes indicated by the magnetic fabric of undisturbed, reworked and fine-layered loess in Hungary. Quaternary International, 319, 76-87. https://doi.org/10.1016/j.quaint.2013.02.009
  11. Butler, F.R., 1992, Paleomagnetism: Magnetic Domains the Geologic Terranes. Blackwell Scientific Publication, 319p.
  12. Calais, E., Vergnolle, M., San'ko, V., Lukhnev, A., Miroshnitchenko, A., Amarjargal, S. and Dverchre, J., 2003, GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): implications for current kinematics of Asia. Journal of Geophysical Research, 108, Doi: 10.1029/2002JB002373.
  13. Chadima, M. and Jelinek, V., 2008, Anisoft 4.2.-Anisotropy data browser, Geophysics and Geodesy, Special issue.
  14. Chae, B.G. and Chang, T.W., 1994, Movement history of Yangsan Fault and its related fractures at Chongha-Yongdok area, Korea. Journal of the Geological Society of Korea, 30, 379-394 (in Korean with English abstract).
  15. Chang, C.J. and Chang, T.W., 1998, Movement History of the Yangsan Fault based on Paleostress Analysis. The Journal of Engineering Geology of Korea, 8, 35-49 (in Korean with English abstract).
  16. Chang, T,W., 2001, Quaternary tectonic activity at the eastern block of the Ulsan Fault. Journal of the Geological Society of Korea, 37, 431-444 (in Korean with English abstract).
  17. Cheon, Y., Son, M., Song C.W., Kim, J.-S. and Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16, 253-273. https://doi.org/10.1007/s12303-012-0029-0
  18. Cheong, C.-S., Kim, J.-M., Lee, S.-H., Jeong, G.Y., Chang, H.-W., Choi, J.-H., Im, C.-B. and Chang, B.U., 2000, Rb-Sr and K-Ar age dating in fault gouges of the Gwaereung, Madong, Gaegok, and Wangsan faults around the Ulsan Fault zone (abstract). Annual Conference of the Geological Society of Korea, 103.
  19. Cheong, C.-S., Lee, K.-S., Lee, S.-H., Kim, J.-M., Han, J.-H., Shin, H.S., Barg, E.J., Park, C.-S., Kim, H., Hong, D., Choi, J.-H., Lee, S.H., Lim, S.H., Kim, H.S., Yang, J.S. and Lee, H.-K., 2001, Absolute age determination of Quaternary fault and formation. Technical Note of Korea Institute of Nuclear Safety (KINS/HR-392, KBSI-2001-20-0131-0040), 166p (in Korean with English abstract).
  20. Cho, H, Kim, H., Kim, J.-S., Cheon, Y. and Son, M., 2013, Magnetic fabric (AMS) of the late Cretaceous to Paleogene Bulguksa Granites, SE Korea: interpretation of granite emplacement mechanism and plate tectonic setting. Preceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, 57-59 (in Korean).
  21. Cho, H., Lee, K., Lee, J., Kim, J.-S., Kim, K.-K., Son, M. and Kim, I.-S., 2010, Anisotropy of magnetic susceptibility (AMS) of the Geochang stone quarries: application to determination of stone fabrics and dignity evaluation (abstract). Annual Conference of the Geological Society of Korea, 217.
  22. Cho, H., Son, M. and Kim, I.-S., 2007, Anisotropy of magnetic susceptibility (AMS) of granitic rocks in the eastern region of the Yangsan Fault. Economic and Environmental Geology, 40, 171-189 (in Korean with English abstract).
  23. Cho, K.-H., Takagi, H., Iwamura, A., Awaji, D., Chang, T.W., Shon, S.-W., Itaya, T. and Okada, T., 2001, Timing of the Hydrothermal Alteration Associated with the Fault Activities along the Ulsan Fault Zone, Southeast Korea. Economic and Environmental Geology, 34, 583-593 (in Korean with English abstract).
  24. Choi, J.-H., Yang, S.-J. and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, 45, 9-28 (in Korean with English abstract).
  25. Choi, P., Ryoo, C.-R., Kwon, S., Chwae, U., Hwang, J., Lee, S.,R. and Lee, B.-J., 2002. Fault tectonics analysis of the Pohang-Ulsan area, SE Korea: Implications for active tectonics. Journal of the Geological Society of Korea, 38, 33-50 (in Korean with English abstract).
  26. Choi, P.Y., 1995, Aspects of stress inversion methods in fault tectonic analysis. Annales Tectonic, 9, 22-38.
  27. Choi, W.-H., 2003, Neotectonics of the Gyeongju-Ulsan area in the southeastern part of Korean Peninsula. Ph.D. dissertation, Seoul National University, 205p (in Korean with English abstract).
  28. Chwae, U.-C. and Choi, S.-J., 2007, Active fault study of Korea: the past, present and future. In Quaternary Tectonics of Southeastern Korea. (eds. Kee, W.-S., Kihm, Y.-H. and Song, K.-Y.), The 5th Symposium of the Geology of Korea, KIGAM, 1-31 (in Korean with English abstract).
  29. Chwae, U.-C., Hwang, J.H., Kim, Yun, U. and Kim, D.H., 1998, Geological report of the Eoil sheet (1:25,000). Korea Institute of Geology of Mining and Materials, 46p.
  30. Constable, C. and Tauxe, L., 1990, The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research, 95, 8383-8395. https://doi.org/10.1029/JB095iB06p08383
  31. Dunlop, D.J. and Ozdemir, O., 1997, Rock magnetism: Fundamentals and Fontiers. Cambridge University Press, Cambridge, 573p.
  32. Elliot, D., 1972, Deformation paths in structural geology. Geological Society of America Bulletin, 83, 2621-2638. https://doi.org/10.1130/0016-7606(1972)83[2621:DPISG]2.0.CO;2
  33. Ellwood, B.B. and Whitney, J.A., 1980, Magnetic fabric of the Elberton granite, northeast Georgia. Journal of Geophysical Research, 85, 1481-1486. https://doi.org/10.1029/JB085iB03p01481
  34. Fisher, R.A., 1953, Dispersion on a sphere. Proceedings of the Royal Society of London, 217, 295-305. https://doi.org/10.1098/rspa.1953.0064
  35. Flinn, D., 1962, On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society of London, 118, 385-433. https://doi.org/10.1144/gsjgs.118.1.0385
  36. Fossen, H., 2010, Structural Geology. Cambridge University Press, Cambridge, 463p.
  37. Fournier, M., Jolivet, L., Davy, P. and Thoma, J.-C., 2004, Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophysical Journal International, 157, 871-889. https://doi.org/10.1111/j.1365-246X.2004.02223.x
  38. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D. and Muller, B., 2008, The World Stress Map based on database release 2008.
  39. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D. and Muller, B., 2009, The World Stress Map based on the database release 2008, equatorial scale 1:46,000,000. Commission for the Geological Map of the World, Paris.
  40. Heki, K., Miyazaki, S., Takahashi, H., Kasahara, M., Kimata, F., Miura, S., Vasilenko, N.F., Ivashchenko, A. and An, K.-D., 1999, The Amurian Plate motion and current plate kinematics in eastern Asia. Journal of Geophysical Research, 104, 29147-29155. https://doi.org/10.1029/1999JB900295
  41. Henry, B. and Daly, L., 1983, From qualitative to quantitative magnetic anisotropy analysis: The prospect of finite strain calibration. Tectonophysics, 98, 327-336. https://doi.org/10.1016/0040-1951(83)90300-1
  42. Henry, B., 1985, Magnetic fabrics and superimposed deformations: example of Dalradian rocks from the southwest Highlands of Scotland. Physics of the Earth and Planetary Interiors, 40, 187-200. https://doi.org/10.1016/0031-9201(85)90129-3
  43. Henry, B., Jordanova, D., Jordanova, N., Souque, C. and Robion, P., 2003, Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241-258. https://doi.org/10.1016/S0040-1951(03)00099-4
  44. Herrero-Bervera, E., Canon-Tapia, E., Walker, G.P.L. and Guerrero-Garcia, J.C., 2002, The Nuuanu and Wailau giant landslides: insights from paleomagnetic and anisotropy of magnetic susceptibility (AMS) studies. Physics of the Earth and Planetary Interiors, 129, 83-98. https://doi.org/10.1016/S0031-9201(01)00238-2
  45. Hobbs, B.E., Means, W.D. and Williarms, P.F., 1976, An outline of structural geology. John Wiley & Sons, New York, 571p.
  46. Hoe, S.Y. and Kyung, J.B., 2008, Fault plane solutions for the recent earthquakes in the central region of South Korea. Journal of Korean Earth Science Society, 29, 437-445. https://doi.org/10.5467/JKESS.2008.29.5.437
  47. Hrouda, F., 1979, Magnetic anisotropy and plastic deformation in metamorphic rocks. Geodynamic Investigations in Czechoslovakia, 271-275.
  48. Hrouda, F., 1982, Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82. https://doi.org/10.1007/BF01450244
  49. Hrouda, F., 1994, A technique for the measurement of thermal-changes of magnetic-susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118, 604-612. https://doi.org/10.1111/j.1365-246X.1994.tb03987.x
  50. Hrouda, F., Jelinek, V. and Zapletal, K., 1997, Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophysical Journal International, 129, 715-719. https://doi.org/10.1111/j.1365-246X.1997.tb04506.x
  51. Hwang, B.H., Lee, J.D., Yang, K. and McWilliams, M., 2007, Cenozoic strike-slip displacement along the Yangsan fault, southeast Korean Peninsula. International Geology Review, 49, 768-775. https://doi.org/10.2747/0020-6814.49.8.768
  52. Hwang, B.H., Son, M., Yang, K., Yoon, J. and Ernst, W.G., 2008, Tectonic evolution of the Gyeongsang Basin, southeastern Korea from 140 Ma to the present, based on a strike-slip and block rotation tectonic model. International Geology Review, 50, 343-363. https://doi.org/10.2747/0020-6814.50.4.343
  53. Iio, Y., Sagiya, T., Kobayashi, Y. and Shiozaki, I., 2002, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands. Earth and Planetary Science Letter, 203, 245-253. https://doi.org/10.1016/S0012-821X(02)00879-8
  54. Jelinek, V., 1978, Statistical processing of anisotropy magnetic susceptibility measured on groups of specimens. Studia Geophysica Geodaetica, 22, 50-62. https://doi.org/10.1007/BF01613632
  55. Jelinek, V., 1981, Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63-67. https://doi.org/10.1016/0040-1951(81)90110-4
  56. Jun, M.-S. and Jeon, J.S., 2010, Focal mechanism in and around Korean Peninsula. Jigu-Mulli-wa-Mulli-Tamsa, 13, 198-202 (in Korean with English abstract).
  57. Jun, M.-S., 1991, Body-wave analysis for shallow intraplate earthquakes in the Korean Peninsula and Yellow Sea. Tectonophysics, 192, 345-357. https://doi.org/10.1016/0040-1951(91)90108-5
  58. Kang, J.-H. and Ryoo, C.-R., 2009, The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea. The Journal of the Petrological Society of Korea, 18, 19-30 (in Korean with English abstract).
  59. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y. and Kihm, Y.-H., 2007, The Eupcheon fault, SE Korea. In: Quaternary Tectonics of Southeastern Korea (eds. Kee, W.-S., Kim, Y.-H. and Song, K.-Y.), The 5th Symposium of the Geology of Korea, KIGAM, 119-149 (in Korean with English abstract).
  60. Kim, I.-S., 1992, Origin of tectonic evolution of the East Sea (Sea of Japan) and the Yangsan Fault System: a new synthetic interpretation. Journal of the Geological Society of Korea, 28, 84-109 (in Korean with English abstract).
  61. Kim, S.G., 1980, Seismicity of the Korean Peninsula and its vicinity. Journal of the Korean Institute of Mining Geology, 13, 51-63.
  62. Kim, S.K., Jun, M.-S. and Jeon, J.-S., 2006, Recent research for the seismic activities and crustal velocity structure. Economic and Environmental Geology, 39, 369-384 (in Korean with English abstract).
  63. Kim, Y.-S., Jin, K., Choi, W.-H. and Kee, W.-S., 2011, Understanding of active faults: A review for recent researches. Journal of the Geological Society of Korea, 47, 723-752 (in Korean with English abstract).
  64. Kyung, J.B. and Okada, A., 1995, Liquefaction phenomena due to the occurrences of great earthquake: Some cases in central Japan and Korea. Journal of the Geological Society of Korea, 31, 237-250.
  65. Kyung, J.B., 1997, Paleoseismological study on the midnorthern part of Ulsan Fault by trench method. The Journal of Engineering Geology, 7, 81-90.
  66. Lee H.-K. and Yang, J.-S., 2003, ESR dating of the Wangsan fault, South Korea. Quaternary Science Reviews, 22, 1339-1343. https://doi.org/10.1016/S0277-3791(03)00018-0
  67. Lee, Y.H., 2003, Quaternary faults in the eastern area of the Ulsan fault (Korea). Thesis of Master, Pusan National University, 74p (in Korean with English abstract).
  68. Lister, G.S., 1977, Discussion: Crossed-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics, 39, 51-54. https://doi.org/10.1016/0040-1951(77)90087-7
  69. Martin-Hernandez, F., Luneburg, C.M., Aubourg, C. and Jackson, M., 2004, Magnetic Fabric: Method and Application. Geological Society of London, 551p.
  70. Miyazaki, S., Tsuji, H., Hatanaka, Y., Abe, Y., Yoshimura, A., Kamada, K., Kobayashi, K., Morishita, H. and Iimura, Y., 1996, Establishment of the nationwide GPS array (GRAPES) and its initial results on the crustal deformation of Japan. Bulletin of the Geographical Survey Institute, 42, 27-41.
  71. Moon, T., Son, M., Chang, T.-W. and Kim, I.-S., 2000, Paleostress reconstruction in the Tertiary basin areas in southeastern Korea. Journal of the Korean Earth Science Society, 21, 230-249 (in Korean with English abstract).
  72. Moores, E.M. and Twiss, R. J., 1995, Tectonics. W.H. Freeman and Company, New York, 415p.
  73. Nishitani, T. and Kono, M., 1983, Curie temperature and lattice constant of oxidized titanomagnetite. Geophysical Journal of the Royal Astronomical Society, 74, 585-600.
  74. Owens, W.H. and Bamford, D., 1976, Magnetic, seismic, and other anisotropic properties of rock fabrics. Philosophical transactions of the Royal Society of London, 283, 55-68. https://doi.org/10.1098/rsta.1976.0069
  75. Park, J.-C., Kim, W., Chung, T.W., Baag, C.E. and Ree, J.-H., 2007, Focal mechanisms of recent earthquakes in the Southern Korean Peninsula. Geophysical Journal International, 169, 1103-1114. https://doi.org/10.1111/j.1365-246X.2007.03321.x
  76. Park, J.K., Tanczyk, E.I. and Desbarats, A., 1988, Magnetic fabric and its significance in the 1400 Ma mealy Diabase Dykes of Labrador, Canada. Journal of Geophysical research, 93, 13689-13704. https://doi.org/10.1029/JB093iB11p13689
  77. Park, M.E., Cho, H., Son, M. and Sohn, Y.K., 2013, Depositional processes, paleoflow patterns, and evolution of a Miocene gravelly fan-delta system in SE Korea constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks. Marine and Petroleum Geology, 48, 206-223. https://doi.org/10.1016/j.marpetgeo.2013.08.015
  78. Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics (2nd Ed.). Springer, 366p.
  79. Petit, C. and Fournier, M., 2005, Present-day velocity and stress fields of the Amurian Plate from thin-shell finiteelement modelling. Geophysical Journal International, 160, 357-369.
  80. Ramsay, J.G. and Huber, M.I., 1983, The Techniques of Modern Structural Geology: Strain Analysis. Academic Press, London, 307p.
  81. Rochette, P., Jackson M. and Aubourg, C., 1992, Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Review of Geophysics, 30, 209-226. https://doi.org/10.1029/92RG00733
  82. Ryoo, C.-R., Moon, S., Lee, Y.H., Choi, S.-J. and Chwae, U., 2004, Quateranry faults around Bulguk-sa, Gyeongju, Korea. KIGAM Bulletin, 8, 3-17 (in Korean with English abstract).
  83. Ryoo, C.-R., Yang, K., Lee, S.-W. and Kim, I.-S., 1996, Quaternary fault in the vicinity of the Ulsan fault. The Journal of College of Education, Pusan National University, 33, 311-327 (in Korean with English abstract).
  84. Sagnotti, L., Speranza, F., Winkler, A., Mattei, M. and Funiciello, R., 1998, Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors, 105, 73-93. https://doi.org/10.1016/S0031-9201(97)00071-X
  85. Schellart, W.P. and Rawlinson, N., 2010, Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483, 4-19. https://doi.org/10.1016/j.tecto.2009.08.030
  86. Schellart, W.P., Stegman, D.R. and Freeman, J., 2008, Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth-Science Reviews, 88, 118-144. https://doi.org/10.1016/j.earscirev.2008.01.005
  87. Skjernaa, L., 1980, Rotation and deformation of randomly oriented planar and linear structures in progressive simple shear. Journal of Structural Geology, 2, 101-109. https://doi.org/10.1016/0191-8141(80)90039-5
  88. Solum, J.G. and van der Pluijm, B.A., 2009, Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior. Tectonophysics, 475, 554-562. https://doi.org/10.1016/j.tecto.2009.07.006
  89. Son, M. and Ryoo, C.-R., 1999, Quaternary faults in the northeastern part of the Ulsan Fault zone, Korea (abstract). Proceedings Korea-Japan/Japan-Korea Geomorphological Conference, 145-146.
  90. Son, M., Cheong, H.-Y. and Kim, I.-S., 2002, Geology and geological structures in the vicinities of the southern part of the Yonil Tectonic Line, SE Korea. Journal of the Geological Society of Korea, 38, 175-197 (in Korean with English abstract).
  91. Son, M., Kim, I.-S. and Sohn, Y.K., 2005, Evolution of the Miocene Waup basin, SE Korea, in response to dextral shear along the southwestern margin of the East Sea (Sea of Japan). Journal of Asian Earth Sciences, 25, 529-544. https://doi.org/10.1016/j.jseaes.2004.06.003
  92. Son, M., Kim, J.-S., Chong, H.-Y., Lee, Y.H. and Kim, I.-S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. The Korean Society of Petroleum Geology, 13, 1-16 (in Korean with English abstract).
  93. Son, M., Lee, Y.H., Kim, I.-S. and Chang, T.W., 2001, A Quaternary reverse fault (Chail fault) in the Chail-Maeul, Buk-gu, Ulsan, Korea (abstract). Proceedings of the Geological Society of Korea Conference Fall 2001, 65p (in Korean).
  94. Son, M., Seo, H.J. and Kim, I.-S., 2000, Geological structures and evolution of the Miocene Eoil basin, southeastern Korea. Geosciences Journal, 4, 73-88. https://doi.org/10.1007/BF02910128
  95. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K., 2013, Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsular. Journal of the Geological Society of Korea, 49, 93-118 (in Korean with English abstract).
  96. Song, M-.Y. and Kyung, J.B., 1996, A Geophysical survey in the central part of the Ulsan Fault and determination of fault characteristics. Journal of Korean Earth Science Society, 17, 250-212.
  97. Soto, R., Mattei, M. and Casas, A.M., 2003, Relationship between AMS and folding in an area of superimposed folding (Cotiella-Boixols nappe, Southern Pyrenees). Geodinamica Acta, 16, 171-185. https://doi.org/10.1016/j.geoact.2003.08.001
  98. Stacey, F.D., Joplin, G. and Lindsay, J., 1960, Magnetic anisotropy and fabric of some foliated rocks from S.E. Ausralia. Geofisica Purae Applicata, 47, 30-40. https://doi.org/10.1007/BF01992481
  99. Tarling, D.H. and Hrouda, F., 1993, The Magnetic Anisotropy of Rocks. Chapman and Hall, London. 227p.
  100. Tauxe, L., 2002, Paleomagnetic Principles and Practice. Springer, New York, 299p.
  101. Tomezzoli, R.N., MacDonald, W.D. and Tickyj, H., 2003, Composite magnetic fabrics and S-C structure in granitic gneiss of Cerro de los Viejos, La Pampa province, Argentina. Journal of Structural Geology, 25, 159-169. https://doi.org/10.1016/S0191-8141(02)00030-5
  102. Twiss, R.J. and Moores, E.M., 2007, Structural Geology (second edition). W.H. Freeman and Company, New York, 736p.
  103. Vergnolle, M., Calais, E. and Dong, L., 2007, Dynamics of continental deformation in Asia. Journal of Geophysical Research, 112, doi:10.1029/2006JB004807.
  104. Wang, K., Wada, I. and Ishikawa, Y., 2004, Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. Journal of Geophysical Research, 109, doi:10.1029/2003JB002888.
  105. Wang, Q., Zhang, P., Freymueller, J., Bilham, R., Larson, K., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z. and Chen, Q., 2001, Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294, 574-577. https://doi.org/10.1126/science.1063647
  106. Yang, J.S., 2006, Quaternary fault activity in the southeastern part of the Korean Peninsula. Ph.D. dissertation, Kangwon National University, 382p (in Korean with English abstract).
  107. Yoon, S., 1989, Tertiary stratigraphy of the southern Korean Peninsula. In: Proceeding of International Symposium on Pacific Neogene Continental and Marine Events (eds. Liu, G., Tsuchi, R. and Lin, Q.), 195-207.
  108. Zonenshain, L.P. and Savostin, L.A., 1981, Geodynamics of the Baikal rift zone and plate tectonics of Asia. Tectonophysics, 76, 1-45. https://doi.org/10.1016/0040-1951(81)90251-1

Cited by

  1. Current microseismicity and generating faults in the Gyeongju area, southeastern Korea vol.694, 2017, https://doi.org/10.1016/j.tecto.2016.11.026
  2. The tectonic evolution and important geoheritages in the Jinan and Muju area, Jeollabuk-do vol.52, pp.5, 2016, https://doi.org/10.14770/jgsk.2016.52.5.709
  3. Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.169
  4. Magnetic fabric changes through thermal treatment: a case study on the Cretaceous Gusandong Tuff in the Gyeongsang Basin, Korea vol.51, pp.2, 2015, https://doi.org/10.14770/jgsk.2015.51.2.171
  5. Geometric and kinematic characteristics of the Quaternary fault at Seooe site, in Goseong-gun, Gyeongsangnam-do vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.115
  6. Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.209
  7. Deformation features and history of the Yangsan Fault Zone in the Eonyang-Gyeongju area, SE Korea vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.95
  8. Geometry and kinematics of fault systems in the Uiseong block of the Gyeongsang Basin, and their roles on the basin evolution vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.241
  9. Geometry and kinematics of the subsidiary faults of the Ilgwang fault, SE Korea vol.52, pp.1, 2016, https://doi.org/10.14770/jgsk.2016.52.1.31
  10. Development of the intracontinental, continuous, narrow transpressional zone along the Sinnyeong Fault in the Cretaceous Gyeongsang Basin, SE Korea pp.1598-7477, 2019, https://doi.org/10.1007/s12303-018-0054-8