DOI QR코드

DOI QR Code

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests

실내시험을 통한 단층물질의 물리·역학적 특성 분석

  • Moon, Seong-Woo (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Yun, Hyun-Seok (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Seo, Yong-Seok (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Chae, Byung-Gon (Planning & Coordination Division, Korea Institute of Geoscience and Mineral Resources)
  • 문성우 (충북대학교 지구환경과학과) ;
  • 윤현석 (충북대학교 지구환경과학과) ;
  • 서용석 (충북대학교 지구환경과학과) ;
  • 채병곤 (한국지질자원연구원 기획조정부)
  • Received : 2017.03.16
  • Accepted : 2017.03.26
  • Published : 2017.03.31

Abstract

Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.

단층물질은 불균질하고 복잡한 메커니즘에 의해 생성되기 때문에 지역, 암종 및 구성 성분에 따라 다양한 특성을 보인다. 본 연구에서는 단층물질의 물리 역학적 특성을 규명하기 위해 국내에 분포하는 단층물질 109개를 채취하여 각종 실내시험을 실시하고, 지역, 암종 및 구성 성분에 따른 물리 역학적 특성(단위중량, 비중, 공극률, 자갈함량, 실트/점토 함량, 점토광물 함량, 내부마찰각 및 점착력)을 분석하였다. 암종별 물리 역학적 특성은 편마암의 경우 단위중량($17.1kN/m^3$)과 비중(2.73)에서 가장 높은 중앙값을 보이며, 화강암은 공극률(45.5%), 편암은 자갈함량(20.0 wt.%)과 점착력(38.1 kPa), 천매암은 실트/점토 함량(54.4 wt.%), 점토광물 함량(37.7 wt.%)과 내부마찰각($38.2^{\circ}$)에서 가장 높은 중앙값을 보인다. 구성 성분별 물리 역학적 특성은 단층점토가 공극률과 실트/점토 함량을 제외한 모든 인자에서 파쇄암 및 손상대보다 낮은 값을 보이는 것으로 나타났다.

Keywords

References

  1. ASTM D 422-63, 2007, Standard test method for particle size analysis of soil, Annual Book of ASTM standard, 04.08.
  2. ASTM D 854-10, 2010, Standard test methods for specific gravity of soil solids by water pycnometer, Annual Book of ASTM standard, 04.08.
  3. ASTM D 2216-10, 2010, Standard test method for laboratory determination of water (moisture) content of soil and rock by mass, Annual Book of ASTM standard, 04.08.
  4. ASTM D 3080-11, 2011, Standard test method for direct shear test of soils under consolidated drained conditions, Annual Book of ASTM standard, 04.08.
  5. ASTM D 5607-08, 2008, Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force, Annual Book of ASTM standard, 04.08.
  6. Caine, J. S., Evans, J. P., and Forster, C. B., 1996, Fault zone architecture and permeability structure, Geology, 24(11), 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
  7. Chung, H. Y., Kim, Y. G., Park, Y. J., and You, K. H., 2009, A study on analysis for the characteristics of fault zone at mica-schist for reinforcement of large-span tunnel, Tunnel and Underground Space, Journal of Korean Society for Rock Mechanics, 19(2), 132-145 (in Korean with English abstract).
  8. Faulkner, D. R., Lewis, A.C., and Rutter, E. H., 2003, On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 367(3-4), 235-251. https://doi.org/10.1016/S0040-1951(03)00134-3
  9. Gudmundsson, A., Simmenes, T. H., Belinda, L., and Philipp, S. L., 2010, Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones, Journal of Structural Geology. 32(11), 1643-1655. https://doi.org/10.1016/j.jsg.2009.08.013
  10. Haines, S. H., Kaproth, B., Marone, C., Saffer, D., and Pluijm, B., 2013, Shear zones in clay-rich fault gouge: a laboratory study of fabric development and evolution, Journal of Structural Geology, 51, 206-225. https://doi.org/10.1016/j.jsg.2013.01.002
  11. Henderson, I. H. C., Ganerod, G. V., and Braathen, A., 2010, The relationship between particle characteristics and frictional strength in basal fault breccias: implications for fault-rock evolution and rockslide susceptibility, Tectonophysics, 486, 132-149. https://doi.org/10.1016/j.tecto.2010.02.002
  12. Heo, J. S., Jeong, J. H., and Kim, H. S., 2007, A review on the engineering characteristics and the investigation/testing method for the fault, Korean Geotechnical Society Fall National Conference, Busan, 147-159 (in Korean).
  13. Heynekamp, M. R., Goodwin, L. B., Mozley, P. S., and Haneberg, W. C., 1999, Controls on fault-zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: implications for fault-zone permeability and fluid flow. In: Haneberg, W. C., Mozley, P. S., Moore, J. C., and Goodwin, L. B. (Eds.), Faults and Subsurface Fluid Flow in the Shallow Crust, American Geophysical Union Geophysical Monograph, 113, 27-50.
  14. Ikari, M. J., Saffer, D. M., and Marone, C., 2009, Frictional and hydrologic properties of clay-rich fault gouge, Journal of Geophysical Research, 114, B05409, doi:10.1029/2008JB006089.
  15. Jang, B. A., Kim, T. H., and Jang, H. S., 2010, Characterization of the three dimensional roughness of rock joints and proposal of a modified shear strength criterion, The Journal of Engineering Geology, 20(3), 319-327 (in Korean with English abstract).
  16. Kim, H. J., Lyu, Y. G., Kim, Y. G., and Lim, H. D., 2012, A study on optimization for location and type of dam considering the characteristic of large fault, Tunnel and Underground Space, Journal of Korean Society for Rock Mechanics, 22(4), 227-242 (in Korean with English abstract).
  17. KS F 2309, 2009, Standard test method for amount of material in passing standard sieve 0.075 mm in soils (in Korean).
  18. Kulatilake, P. H. S. W., Shou, G., Huang, T. H., and Morgan, R. M., 1995, New peak shear strength criteria for anisotropic rock joints, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 32(7), 673-697. https://doi.org/10.1016/0148-9062(95)00022-9
  19. Lee, K. M., Lee, S. H., Seo, Y. S., Kim, C. Y., and Kim, K. S., 2007, Petro-mineralogical and mechanical property of fault material in phyllitic rock tunnel, The Journal of Engineering Geology, 17(3), 339-350 (in Korean with English abstract).
  20. Moon, S. W., Yun, H. S., Kim, W. S., Na, J. H., Kim, C. Y., and Seo, Y. S., 2014, Correlation analysis between weight ratio and shear strength of fault materials using multiple regression analysis, The Journal of Engineering Geology, 24(3), 397-409 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.3.397
  21. Seo, Y. S., Yun, H. S., Ban, J. D., and Lee, C. K., 2016, Mechanical properties of fault rocks in Korea, The Journal of Engineering Geology, 26(4), 571-581 (in Korean with English abstract). https://doi.org/10.9720/kseg.2016.4.571
  22. Sibson, R. H., 1977, Fault rocks and fault mechanisms, Journal of the Geological Society, 133, 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  23. Sinha, U. N. and Singh, B., 2000, Testing of rock joints filled with gouge using a triaxial apparatus, International Journal of Rock Mechanics and Mining Sciences, 37, 963-981. https://doi.org/10.1016/S1365-1609(00)00030-7
  24. Sulem, J., Vardoulakis, I., Ouffoukh, H., Boulon, M., and Hans, J., 2004, Experimental characterization of the thermo-poromechanical properties of the Aegion Fault gouge, C. R. Geoscience, 336, 455-466. https://doi.org/10.1016/j.crte.2003.12.009
  25. Takagi, H. and Kobayashi, K., 1996, Composite planar fabrics of fault gouges and mylonites-comparative petrofabrics, Journal of Geological Society of Japan, 102(3), 170-179 (in Japanese with English abstract). https://doi.org/10.5575/geosoc.102.170
  26. Tesei, T., Collettini, C., Carpenter, B. M., Viti, C., and Marone, C., 2012, Frictional strength and healing behavior of phyllosilicate-rich faults, Journal of Geophysical Research, 117, B09402, doi:10.1029/2012JB009204.
  27. Tukey J. W., 1970, Exploratory data analysis, Addison-wesley, preliminary edition.
  28. Woo, I., 2012, Laboratory study of the shear characteristics of fault gouges around Mt. Gumjung, Busan, The Journal of Engineering Geology, 22(1), 113-121 (in Korean with English abstract). https://doi.org/10.9720/kseg.2012.22.1.113
  29. Yun, H. S., Moon, S. W., and Seo, Y. S., 2015, Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis, Journal of Korean Tunnelling and Underground Space Association, 17(2), 127-140 (in Korean with English abstract). https://doi.org/10.9711/KTAJ.2015.17.2.127