• Title/Summary/Keyword: Glass fiber reinforced plastics (GFRP)

Search Result 65, Processing Time 0.033 seconds

Behavior of pre-cracked deep beams with composite materials repairs

  • Boumaaza, M.;Bezazi, A.;Bouchelaghem, H.;Benzennache, N.;Amziane, S.;Scarpa, F.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.575-583
    • /
    • 2017
  • The study covers the behavior of reinforced concrete deep beams loaded under 4-point bending, failed by shear and repaired using bonding glass fiber reinforced plastics fabrics (GFRP) patches. Two rehabilitation methods have been used to highlight the influence of the composite on the ultimate strength of the beams and their failure modes. In the first series of trials the work has been focused on the reinforcement/rehabilitation of the beam by following the continuous configuration of the FRP fabric. The patch with a U-shape did not provide satisfactory results because this reinforcement strategy does not allow to increase the ultimate strength or to avoid the abrupt shear failure mode. A second methodology of rehabilitation/reinforcement has been developed in the form of SCR (Strips of Critical Region), in which the composite materials reinforcements are positioned to band the inclined cracks (shear) caused by the shear force. The results obtained by using this method lead a superior out come in terms of ultimate strength and change of the failure mode from abrupt shearing to ductile bending.

Light-weight Optimum Design of Laminate Structures of a GFRP Fishing Vessel (GFRP 낚시어선의 선체구조 적층판 분석과 경량화 설계)

  • Jang, Jae-Won;Han, Zhiqiang;Oh, Daekyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.495-503
    • /
    • 2019
  • Approximately 90,000 ships are registered in South Korea, and about 80,000 of these ships are used in domestic shipping. Among these, 84% are small ships, such as a fishing vessels that weigh less than 20 tons and are made mostly of an FRP (Fiber Reinforced Plastics). When this fact is taken into account, the greenhouse gas emissions that are released per ton of a composite vessel are sizeable. In this study, the laminated structures of an FRP fishing vessel, many of which currently are being built in Korea, were analyzed by ISO (International Organization for Standardization) and international design rules, and the structures of the hulls are lightweight with optimum glass fiber mass content as determined by the laminate weight minimization algorithm. As a result, it was confirmed that the laminations of the vessels in accordance with the Korean rule could have 6.4% to approximately 11% more design margin compared to the requirements of ISO and other international rules. And the case study of the application of the laminate weight minimization algorithm showed the possibility of reducing the weight of the hull bottom plating by as much as about 19.32% and by as much as about 18.06% in the overall structure.

Bonding Performance of Glulam Reinforced with Glass Fiber-Reinforced Plastics (유리섬유강화플라스틱 복합집성재의 접착성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.357-363
    • /
    • 2009
  • This study was carried out to investigate whether adhesive used in manufacturing glulam can be used to bond wood and GFRP, when considering working process and economical efficiency. The six different glulams were manufactured, changing the adhesives and the mixing ratios of the adhesives, and investigated by the block shear test and the delamination of the water soaking or boiling water soaking. The three glulams were manufactured, using the resocinol resin based adhesive, the PVAc resin based adhesive and the epoxy resin adhesive, and the other three glulams, using the adhesives mixing resocinol resin and PVAc resin. The block shear strength is higher than $7.1N/mm^2$ in all types, which is standard of KS F3021. However, in the wood failure the block shear strength was the highest as 65.9% in the PVAc. The delamination of glulams glued with PVAc adhesive, which was 1.08% in water soaking and 4.16% in boiling water soaking, was lower than 5.00% which is the standard of KS F 3021, and the adhesive strength is good. In glulams glued with only resocinol resin adhesive, the wood layers were good as 1.26% in the water soaking delamination and 0.00% in the boiling water soaking delamination. The GFRP layers were not good as 21.85% in the water soaking delamination but were good as 1.45% in the boiling water soaking delamination.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP (GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가)

  • Ryu, Jae-Ho;Park, Se-Ho;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.125-135
    • /
    • 2011
  • To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.

Evaluation of Moment Resistance of Rigid Frame with Glued Joint (강절형 목질접합부의 모멘트저항성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • In this study, specimens of rigid frame joint were produced by integrating joints with adhesive and other specimens were produced by inserting a wooden gusset integrated with a column member into a slit-processed beam member and joining them with pins. Then the moment resistance performances of the specimens were examined. For the wooden gusset, a GFRP-reinforced wooden gusset was used. The calculation results of perfect elasto-plasticity for the frame specimens for which a GFRP-reinforced wooden gusset was inserted into and joined with the slit-processed beam member by pins were 20-80% lower compared to the control group which consisted of steel plate-inserted frame specimens. The rigid frame specimens for which the column and beam members have been integrated with adhesive showed almost no initial residual transformations, as well as 38% greater initial rigidity and 41% greater plasticity compared to the steel plate-inserted joint.

Mechanical Behaviour of GFRP Composites according to Alumina Powder Impregnation Ratios in Resin (알루미나 분말 혼합 비율에 따른 GFRP의 기계적 강도 특성)

  • Kang, Dae-Kon;Park, Jai-Hak
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • Small fishing vessels are manufactured using FRP. Various studies have been conducted to increase the strength of the composite material by mixing alumina powder with resin. Tensile tests and flexural strength tests are conducted to examine the effect of alumina powder on the strength of GFRP. In the current study, resin/alumina composites at different alumina contents (i.e., 0, 1, 5, and 10 vol%) have been prepared. The physical and mechanical properties of the prepared composites have been investigated. From the results, the tensile strength of the specimen with alumina powder mixed in at 10% shows the highest value of 155.66 MPa. The tensile strength of the specimen mixed with alumina powder increases with the amount of alumina powder impregnated. In the flexural strength test, the flexural strength of neat resin without alumina powder has a highest value of 257.7 MPa. The flexural modulus of ALMix-5 has a highest value of 12.06 GPa. Barcol hardness of ALMix-10 has a highest value of 51. We show that alumina powder leads to decreasing cracks on the surface and decreasing length area of delamination.

Research on Mechanical Properties and Characteristics of Hybrid Composites for Boat (보트에 적용되는 하이브리드 복합재에 대한 기계적 특성 연구)

  • Cho, Je-Hyoung;Kim, Sung-Hoon;Yoon, Sung-Won;Ha, Jong-Rok;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2016
  • Recently, Application of composite materials are increased in transport area for weight reduction. Also, Related technical developments have been implemented actively at domestic and abroad. In particular, The carbon fiber has high strength and ultra light property higher than stainless steel, aluminum, GFRP as Eco-friendly material. Carbon fiber contribute to improving the environmental effect such as fuel saving, expansion of loadage, reducing the exhaustion of carbon dioxide through the weight reduction of transport area. In addition, The carbon fiber is applied to the ship in the area of race yacht, luxury cruise boat as weight reduction and high added-value materials, but there is limited application for general boat because price of carbon fiber is very expensive. For the weight reduction of general boat hull, being used as structure materials, glass fiber and carbon fiber are applied to hull with form of hybrid composite materials, but application of domestic and research for development are incomlete. In this study, An evaluations of mechanical strength property and fatigue strength are performed on composite materials by hybrid weaving of glass fiber and carbon fiber and composite materials forming method by hybrid forming.

Structural analysis and safety design of composite wind turbine blades considering static loads (정적 하중을 고려한 풍력 터빈 복합재 블레이드의 구조해석과 안전도 설계)

  • Choi, Jaeheok;Lee, Jaehwan;Shin, SangJoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • 본 논문에서는 소음을 저감하고 구조적 안전도를 향상시키기 위하여 10kW급 소형 복합재 풍력터빈 블레이드를 해석, 설계하였다. 풍력터빈 블레이드 설계의 기본 사항에 맞추어 블레이드의 스팬 길이는 약 4m, 중량은 30kg 내외가 되도록 설정하였다. 풍력발전기용 블레이드는 경량화가 중요하므로 유리섬유복합재 (glass fiber reinforce pastics), 탄소섬유복합재 (carbon fiber reinforced plastics)가 사용되었다. 본 설계에서는 Carbon prepreg (WSN3KY), Carbon UD(UIN150c), E-glass 등을 사용하였다. 상용 유한요소 프로그램인 NASTRAN을 이용해 Carbon prepreg (WSN3KY), Carbon UD (UIN150c)의 탄소섬유복합재만으로 구성된 블레이드 구조해석을 수행한 결과 중량 조건 및 강도의 안전도는 충족되었으나, 높은 가격을 감안하여 E-glass와 조합하여 블레이드를 재설계할 예정이다. 이번 설계는 소형 풍력발전용 블레이드 설계이므로 좌굴은 고려하지 않았으며, 향후 필요에 따라서 좌굴 및 피로해석도 수행하여 검증할 예정이다. 그리고 블레이드가 복합재로 구성되면 감쇠력이 감소할 가능성이 있다. 탄소섬유복합재로만 구성된 블레이드 구조해석에서도 최대 40cm의 변형이 예측되었으며, 감쇠값 저하 문제도 고려하여야 될 것 같아 BEMT (Blade Element Momentum Theory) 공력모델을 이용해 구조-유체 연성 결합 해석을 수행할 계획이다.

  • PDF

A Study of PBD and BD Voltage Characteristics in the Simulate Electrode System of Solenoid Type High Temperature Superconducting Coils (솔레노이드형 고온초전도코일 모의전극계에서 부분 및 완전파괴전압특성 연구)

  • 석복렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.94-98
    • /
    • 2002
  • The Partial breakdown (PBD) and complete breakdown (BD) voltage characteristics in a composite insulation system of glass fiber reinforced plastics (GFRP) and liquid nitrogen are investigated to find the PBB and BD characteristics in solenoid type high temperature superconducting (HTS) coils at quench. The electrode system used is made from a coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers, and is immersed in liquid nitrogen. A heater is mounted inside the coil electrode to generate boiling which occurs on quenched superconducting coils. The experimental results show that: (1) breakdown voltages are affected severely by the risetime of the applied voltage and the PBD inception voltage, (2) two kinds of BD mechanisms are found depending on the shape of the spacer, length of cooling channel and heater power.