An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP

GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가

  • 류재호 (고려대학교 건축사회환경공학부) ;
  • 박세호 (고려대학교 건축사회환경공학부) ;
  • 주영규 (고려대학교 건축사회환경공학부) ;
  • 김상대 (고려대학교 건축사회환경공학부)
  • Received : 2010.10.15
  • Accepted : 2011.02.17
  • Published : 2011.02.28

Abstract

To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.

최근 타워형 아파트구조에 많이 사용되고 있는 무량판 구조시스템을 대신해 층고절감 및 장스팬 구현 그리고 내화성능향상을 목적으로 GFRP를 이용한 경량합성바닥을 개발하였다. GFRP를 이용한 경량합성바닥은 웨브에 개구부를 가지는 비대칭 강재보 하부에 GFRP를 부착하고 슬래브에 경량체를 삽입한 중공합성바닥이다. 이에 개발된 합성바닥의 휨성능을 평가하기 위해 GFRP, 중공률, 웨브의 개구부 등을 변수로 실대 실험을 수행하였다. 그 결과 GFRP를 이용한 합성보 실험체는 기준 실험체에 비해 휨내력 및 강성 측면에서 10% 높은 성능을 나타냈으며, 구조물이 항복할 때까지 완전합성거동하였다. 항복 이후 웨브개구부 주변의 응력집중현상에 의해 연성이 감소하는 현상이 나타났으며, 최대내력점까지 미끄러짐의 발생은 미소하였다. 내력설계 측면에서는 안전율을 고려해 해석값의 85%를 설계내력으로 평가하는 것이 타당한 것으로 나타났다.

Keywords

References

  1. 김경주(2006) 슬림빔을 이용한 슬림플로어공법 소개, 대한건축학회지, 대한건축학회, 제50권, 제12호.
  2. 대한건축학회(2009) 건축구조기준 및 해설(KBC) 2009, 대한건축학회.
  3. 배규웅, 허병욱, 류기정, 박원, 이원열(2010) 단면 형상이 T+U 형태인 롤 성형 강판합성보 공법개발, 한국강구조학회지, 한국강구조학회, 제22권, 제3호, pp.20-26
  4. 송영, 최경륜(2008) 주거용 무량복합구조(FcDW)시스템 설계 와 적용, 콘크리트학회지, 한국콘크리트학회, 제20권, 제2호, pp.37-42
  5. 이현호, 김도현, 김영식, 우성우(2008) 무량판 구조의 횡하중저항시스템 및 설계 절차, 콘크리트학회지, 한국콘크리트학회, 제20권, 제2호, pp.14-18.
  6. 이호엽, 김석중, 김필중, 최산호, 양영성, 김규석(1992) 장방형 개구부를 갖는 보강유공합성보에 관한 연구, 대한건축학회 학술발표논문집, 대한건축학회, 제12권, 제2호, pp.417-420.
  7. 이호찬(2008) MHS공법 소개, 한국건축구조기술사회지, 한국건축구조기술사회,제15권, 제1호, pp.55-65.
  8. 정광량, 손영진(2006) 무량판 바닥 시스템에 대한 구조계획 및 시공기술, 대한건축학회지, 대한건축학회, 제50권, 제3호, pp.106-111
  9. 최산호, 김규석, 양영성, 김필중(1993) 다공 합성보의 변형 및 내력에 관한 연구, 대한건축학회논문집, 대한건축학회, 제9권, 제11호, pp.99-108.
  10. 최재우, 김상모, 김영호, 김상섭, 이창남, 김규석(2001) TSC 합성보의 거동 분석,대한건축학회 학술발표논문집, 대한건축학회, 제21권, 제2호, pp.305-308.
  11. 황황규, 백성렬(2009) 비대칭 조립 H형강 합성보, SMARTBEAM 개발 및 적용사례 소개, 한국건축구조기술사회지, 한국건축구조기술사회, 제16권, 제4호, pp.48-52
  12. American Concrete Institute (2008) Building Code Requirements for Structural Concrete and Commentary(ACI318M-08), ACI, U.S.A.
  13. American Institute of Steel Construction (2005) Steel Construction manual(Specifications and Codes), AISC, U.S.A.
  14. Camata, G. and Shing, P.B. (2010) Static and fatigue load performance of a gfrp honeycomb bridge deck, Composites Part B: Engineering, Elsevier, Vol.41, Issue 4, pp.299-307 https://doi.org/10.1016/j.compositesb.2010.02.005
  15. Chen, Y., Davalos, J.F., and Ray, I. (2006) Durability prediction for GFRP bars using short-term data of accelerated aging tests, J. Compos. Constr., American Society of Civil Engineers, Vol. 10, Issue. 4, pp.279-286. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:4(279)
  16. Chen, Y., Davalos, J.F., Ray, I., and Kim, H.Y. (2007) Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures, Compos. Struct., Elsevier, Vol. 78, Issue. 1, pp.101-111. https://doi.org/10.1016/j.compstruct.2005.08.015
  17. Ju,Y.K., Chun,S.C., and Kim,S.D. (2009) Flexural Test of a Composite Beam Using Asymmetric Steel Section with Web Openings, Journal of Structural Engineering, American Society of Civil Engineers, Vol. 135,No. 4,pp.448-458. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(448)
  18. Loo, Y.C. and Guan, H. (1997) Cracking and Punching Shear Failure Analysis of RC Flat Plates, Journal of Structural Engineering, American Society of Civil Engineers, Vol. 123, No. 10, pp.1321-1330. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1321)
  19. Makowski Z.S. (1964) The structural applications of plastics. In: Davis RM, editor. Plasticsin Building Construction. Proc Conference on Plastics in Building Construction, London, Battersea College of Technology, pp.49-78.
  20. Mullett, D.L. (1992) Slim floor design and construction, Steel Construction Institute, U.K.
  21. Mullett, D.L. (1998) Composite floor system, Blackwell, Oxford, U.K.
  22. Mullett, D.L. and Lawson, R.M. (1993) Slim floor construction using deep decking, Steel Construction Institute, U.K.
  23. Naccarato, P.A. (1999) New Alternative to Flat Plate Construction, Modern Steel Construction, AISC, U.S.A.
  24. Naccarato, P.A. (2000) Low Floor-to-Floor Heights, Modern Steel Construction, AISC, U.S.A.
  25. Rackham, J.W., Hicks, S.J., and Newman, G.M. (2006) Design of Asymmetric Slimflor Beams with Precast Concrete Slabs, Steel Construction Institute, U.K.
  26. Robert, M. and Benmokrane, B. (2010) Physical, Mechanical, and Durability Characterization of Preloaded GFRP Reinforcing Bars, J. Compos. Constr., American Society of Civil Engineers, Vol. 14, Issue 4, pp.368-375 https://doi.org/10.1061/(ASCE)CC.1943-5614.0000104
  27. Robert, M., Cousin, P.,and Benmokrane,B. (2009) Durability of GFRP reinforcing bars embedded in moist concrete, J. Compos. Constr., American Society of Civil Engineers, Vol.13, No.2, p.132, pp.66-73.