• Title/Summary/Keyword: Geogrid-reinforced wall

Search Result 81, Processing Time 0.023 seconds

Assessment of Frictional Characteristic for the Segmental Retaining Wall Unit (보강토 옹벽 전면블록의 마찰특성 평가)

  • Kim Jin-Man;Cho Sam-Deok;Oh Se-Yong;Lee Dae-Young;Paik Young-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The use of geogrid for SRW systems and bridge abutment has increased rapidly over the past 10 years in Korea. The concept of segmental retaining walls and reinforced soil is very old and for example The Ziggurats of Babylonia(i.e. Tower of Babel) were built some 2,500 to 3,000 years ago using soil reinforcing methods very similar to those described in current design. Modern SRW(Semental Retaining Wall) units were introduced in 1960's as concrete crib retaining wall systems. In this paper, the friction properties between segmental concrete units and geogrid are investigated by performing various tests.

Stability evaluation of reinforced earth walls based on large-scale modular blocks (대형 축조블록을 이용한 보강토옹벽의 안정성 평가)

  • Han, Jung-Geun;Kim, Min-Woo;Hong, Kikwon;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 2014
  • This paper describes external and internal stability of reinforced earth wall using large-scale modular block and geogrid reinforcement. The evaluation for external and internal stability was conducted to analyze effect of wall height, reinforced soil (or backfill soils) and reinforcement strength. The external stability showed that the analysis cases were satisfied with design criteria, when the required minimum length and vertical spacing of reinforcement were 0.7H and 1m, respectively. The internal stability conformed that some cases were satisfied with design criteria in $25^{\circ}$ of internal friction angle of reinforced soil. Expecially, it will be applicable as wall structure considering a structural stability and economic efficiency based on evaluation of internal stability.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

Static Performance of Reinforced Soil Segmental Retaining Wall (블록식 보강토 옹벽의 정적성능 평가)

  • Koh Tae-Hoon;Lee Sung-Hyuck;Lee Jin-Wook;Hwang Seon-Keun;Park Sung-Hyun;Lee Seung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.46-52
    • /
    • 2003
  • In this study, the full scale testing method of the geogrid-reiuorced soil Segmental Retaining Walll(SRW) under the simulated train loading were proposed in order to evaluate the applicability of reinforced soil SRW in railway embankment. The train loading was simulated by the design static wheel load and the impact coefficient due to the train passing velocity. This test was focused on the static performance of reinforced soil SRW in terms of the following measuring systems ; the horizontal earth pressure displacement acting on the facing block and the tensile strain along the geogrid. The data gathered from this full scale testing was compared with numerical analysis results by FLAC.

  • PDF

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Tensile Strength-Strain Relationship of Various Geogrids (다양한 지오그리드의 인장강도-인장변형 관계 특성)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Lee, Kwang-Wu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.83-93
    • /
    • 2012
  • Since reinforced soil walls were introduced in domestic civil engineering society in early 1980's, various reinforcing materials including metal strips, bar mats, and sheet-type reinforcement using geotextile, geogrid, and etc. have been developed for construction purpose. Especially, the geogrid has been mostly used as a reinforcement for reinforced earth structures. This paper describes the tensile behaviors of four types of domestic geogrids. Also, a series of the wide-width tensile tests on three types of geogrids were conducted to assess the reliability of the tensile strains in geogrid measured by strain gauge. The tensile strain by strain gauge is larger than real strain of the geogrid and a difference between strain gauge reading and real strain non-linearly increase with increasing the tensile strain. However, when the tensile strain is smaller than 3%, a difference between strain gauge reading and real strain is negligible.

Long Term Behaviors of Geosynthetics Reinforced Soil Walls (보강토옹벽의 장기거동분석에 관한 연구)

  • Won, Myoung-Soo;Lee, Yong-An;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.33-42
    • /
    • 2006
  • Geosynthetics reinforced soil (GRS) walls with a flexible wall face allow deformation. GRS walls constructed on the weak ground change in both horizontal earth pressures on wall faces and the tensile stress of geosynthetics, affecting the backfill in time until the deformation of the backfill and the foundation is completed. However, there are few studies that were done to measure and analyze the horizontal earth pressures and geosynthetics deformation on GRS walls constructed on the soft ground for a long period of time. Two field GRS walls in this study are constructed on a shallow layer of a weak foundation to measure and analyze geostynthetics deformation, horizontal earth pressures, and pore water pressures for the duration of approximately 16 months. Strain gauges are used to measure geosynthetics deformation; this study specifically suggests a new method of measuring nonwoven geotextile using strain gauges. Most geosynthetics deformation occurred within a month after the construction of GRS walls. The maximum deformation measured for approximately 16 months appeared as follows: nowoven geotextile: 6.05%, woven geotextile: 2.92%, and geogrid: 2.33%. Pore water pressures on the GRS wall can be ignored; however, horizontal earth pressures on the bottom and the upper part of the wall face appear larger than earth pressures at rest.

Numerical Investigation on Behavior of Back-to-Back Reinforced Earth Wall (Back-to-Back옹벽의 거동에 관한 수치 해석적 연구)

  • Yoo, Chung-Sik;Kim, Jae-Wang
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.131-142
    • /
    • 2009
  • Geosynthetic reinforced soil walls are well recognized alternatives to conventional retaining walls due to many advantages in terms of ease of construction, economy, and aesthetics, among others. In recent years, the use of back-to-back (BTB) geosynthetic reinforced soil walls has been increasing for roadway and railway construction. However, there are insufficient studies concerning the behavior of BTB type geosynthetic reinforced soil walls. In this study a series of finite element analysis were performed for BTB walls with various wall geometry and reinforcement distribution. The results were then analyzed to relate the wall geometry and reinforcement distribution and the performance of BTB walls. Optimum reinforcement pattern was also investigated.

A Case Study of Hybrid Reinforced Geo-Structure using Reinforced Concrete Block and Slope (콘크리트 블록식 보강토 옹벽과 보강사면을 복합으로 이용한 보강토의 설계 및 시공사례 연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • With the need of efficient site use retaining walls have frequently used. Of them dry cast modular block wall(MBW), in which geogrid and concrete block are used is getting popular because of its simplicity and economical efficiency of construction. However, since this method is based on the theory of earth pressure, sands with good quality should be used. In contrast, reinforced soil slope(RSS) that the slope is less than $70^{\circ}$ can use wider range of soil than MBW. A hybrid reinforced geo-structure might be a good alternative in view of overcoming difficulty obtaining soils with good quality as well as maximizing the efficiency of site use. This method is composed of reinforced block wall and reinforced soil slope. In this method, reinforced block wall is constructed up to a certain height vertically at ground boundary first. Reinforced soil slope is then constructed on the block wall subsequently. This paper introduces several technical points that should be taken into account in design and construction.

  • PDF

An Analysis of the Internal Deformation Behaviors of Geosynthetic Reinforced Soil Walls used Clayey Soil as Backfills (뒤채움재로 점성토를 사용한 보강토벽의 내적 거동 분석)

  • Kim, Heung-Ki;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.39-49
    • /
    • 2005
  • In this study, the fifteen month behavior of two geosynthetic reinforced walls which was constructed on the shallow weak ground was measured and analyzed. The walls were backfilled with clayey soil obtained from the construction site nearby, and the safety factors obtained from general limit equilibrium analysis were less than 1.3 in both wall. The measured and analyzed data were horizontal earth pressures, strain of reinforcements, and excess pore water pressures. The used reinforcements were nonwoven geotextile, woven geotextile and geogrid. Although the length of reinforcement was only 30% of wall height and the safety factors of the walls were less than 1.3, the walls were constructed without any problems on the such weak ground. The analysis results showed that the maximum strain of reinforcements were negligible and the strain was between 2.3 and 6.0% according to tensile characteristic of the reinforcements. The excess pore water pressure was not changed due to the rainfall and the horizontal earth pressures in upper and lower part of the walls were larger than the active and the rest pressure.

  • PDF