• Title/Summary/Keyword: Genetic Architecture

Search Result 346, Processing Time 0.026 seconds

Neural-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴럴-퍼지 제어기)

  • 박영철;김대수;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.245-248
    • /
    • 2000
  • In this paper we improve the performance of autonomous mobile robot by induction of reinforcement learning concept. Generally, the system used in this paper is divided into two part. Namely, one is neural-fuzzy and the other is dynamic recurrent neural networks. Neural-fuzzy determines the next action of robot. Also, the neural-fuzzy is determined to optimal action internal reinforcement from dynamic recurrent neural network. Dynamic recurrent neural network evaluated to determine action of neural-fuzzy by external reinforcement signal from environment, Besides, dynamic recurrent neural network weight determined to internal reinforcement signal value is evolved by genetic algorithms. The architecture of propose system is applied to the computer simulations on controlling autonomous mobile robot.

  • PDF

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Genetically Optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Set (퍼지집합 기반 진화론적 최적 퍼지다항식 뉴럴네트워크)

  • Park, Byoung-Jun;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2633-2635
    • /
    • 2003
  • In this study, we propose a fuzzy polynomial neural networks (FPNN) and a genetically optimized fuzzy polynomial neural networks(GoFPNN) for identification of non-linear system. GoFPNN architecture is designed by a FPNN based on fuzzy set and its structure and parameters are optimized by genetic algorithms. A fuzzy neural networks(FNN) based on fuzzy set divide into two structures that is simplified inference structure and linear inference structure. The proposed FPNN is resulted from integration and extension of simplified and linear inference structure of FNN. The consequence structure of the FPNN consist of polynomials represented by networks using connection weights for rules. The networks comprehend simplified(Type 0), linear (Type 1), and quadratic(Type 3) inferences. The proposed FPNN can select polynomial type of consequence part for each rule. Therefore, proposed scheme can offer flexible structure design capability for a system characteristics. Moreover, GAs is applied to networks structure and parameters tuning of proposed FPNN, and its efficient application method is discussed, these subjects are result in GoFPNN that is optimal FPNN. To evaluate proposed model performance, a numerical experiment is carried out.

  • PDF

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

  • Sun, Chunya;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.995-1006
    • /
    • 2015
  • Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

A Syudy on the Biomedical Information Processing for Biomedicine and Healthcare (의료보건을 위한 의료정보처리에 관한 연구)

  • Jeong, Hyun-Cheol;Park, Byung-Jun;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.243-251
    • /
    • 2009
  • This paper surveys some researches to accomplish on bioinformatics. These researches wish to propose a database architecture combining a general view of bioinformatics data as a graph of data objects and data relationships, with the efficiency and robustness of data management and query provided by indexing and generic programming techniques. Here, these invert the role of the index, and make it a first-class citizen in the query language. It is possible to do this in a structured way, allowing users to mention indexes explicitly without yielding to a procedural query model, by converting functional relations into explicit functions. In the limit, the database becomes a graph, in which the edges are these indexes. Function composition can be specified either explicitly or implicitly as path queries. The net effect of the inversion is to convert the database into a hyperdatabase: a database of databases, connected by indexes or functions. The inversion approach was motivated by their work in biological databases, for which hyperdatabases are a good model. The need for a good model has slowed progress in bioinformatics.

  • PDF

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

Meta-model Effects on Approximate Multi-objective Design Optimization of Vehicle Suspension Components (차량 현가 부품의 근사 다목적 설계 최적화에 대한 메타모델 영향도)

  • Song, Chang Yong;Choi, Ha-Young;Byon, Sung-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.74-81
    • /
    • 2019
  • Herein, we performed a comparative study on approximate multi-objective design optimization, to realize a structural design to improve the weight and vibration performances of the knuckle - a car suspension component - considering various load conditions and vibration characteristics. In the approximate multi-objective optimization process, a regression meta-model was generated using the response surfaces method (RSM), while Kriging and back-propagation neural network (BPN) methods were applied for interpolation meta-modeling. The Pareto solutions, multi-objective optimal solutions, were derived using the non-dominated sorting genetic algorithm (NSGA-II). In terms of the knuckle design considered in this study, the characteristics and influence of the meta-model on multi-objective optimization were reviewed through a comparison of the approximate optimization results with the meta-models and the actual optimization.

User-Participated Design Method for Perforated Metal Facades using Virtual Reality (가상현실 기반 사용자 참여형 타공패널 파사드 설계 방법론)

  • Jang, Do-Jin;Kim, Seongjun;Kim, Sung-Ah
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.4
    • /
    • pp.103-111
    • /
    • 2020
  • Perforated metal sheets are used as panels of facades for controlling environmental factors while ensuring user's visibility. Despite their functional potentials, only a specific direction of facades or an orientation of a building was considered in the relevant studies. This study proposed a design methodology for the perforated panel facades that reflects the location on the facades and the user's requirements. The optimization of quantitative and qualitative performance is achieved through communication between designers and users in a VR system. In optimizing quantitative performances, designers use machine learning techniques such as clustering and genetic algorithm to allocate optimal panels on the facades. In optimizing qualitative performances, through the VR system, users intervene in evaluating performances whose preferences are depending on them. The experiment using the office project showed that designers were able to make decisions based on clustering using GMM to optimize multiple quantitative performances. The gap between the target and final performance could be narrowed by limiting the types of perforated panels considering mass customization. In assessing visibility as a qualitative performance, users were able to participate in the design process using the VR system.

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.