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Abstract 
 

With the application of wireless sensor networks in the fields of ecological observation, 
defense military, architecture and urban management etc., the security problem is becoming 
more and more serious. Characteristics and constraint conditions of wireless sensor networks 
such as computing power, storage space and battery have brought huge challenges to 
protection research. Inspired by the danger theory in biological immune system, this paper 
proposes an intrusion detection model for wireless sensor networks. The model abstracts 
expressions of antigens and antibodies in wireless sensor networks, defines meanings and 
functions of danger signals and danger areas, and expounds the process of intrusion detection 
based on the danger theory. The model realizes the distributed deployment, and there is no 
need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger 
signals according to their own environmental information, and do not need to communicate 
with other nodes, which saves resources. When danger is perceived, the model acquires the 
global knowledge through node cooperation, and can perform more accurate real-time 
intrusion detection. In this paper, the performance of the model is analyzed including 
complexity and efficiency, and experimental results show that the model has good detection 
performance and reduces energy consumption. 
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1. Introduction 

As the development of sensor technology, wireless communication technology, distributed 
information processing technology and embedded technology, the wireless sensor network 
(WSN) - a network which is composed of a large number of tiny sensor nodes with micro 
processing ability, arises at the historic moment. It fuses the logical information world with the 
objective physical world, and has changed the way people interact with nature. WSNs have 
gained widespread attention from academia, industry and government, and become one of the 
most competitive application technologies in many fields such as national military defense, 
environment monitoring and forecasting, health care, smart home, building structure 
monitoring, complex machinery monitoring, urban traffic, space exploration, large workshop 
and warehouse management, large industrial park safety monitoring [1-5]. 

To ensure the safety of WSNs is one of the bases that wireless sensor networks can be 
widely applied. Some defense measures such as encryption, authentication, secure routing, can 
prevent the invasion to some extent, but cannot completely hold back all kinds of attacks. The 
main challenges of WSN intrusion detection are as follows. 

(1) Attack form is varied. Means and characteristics of attacks in wireless sensor networks 
have a bigger difference with those in traditional computer networks. For example, most of 
attacks in the link layer and the network layer are peculiar to wireless sensor networks. 
Traditional computer network resources such as network, files, system logs, processes cannot 
be used in wireless sensor networks, and we need to consider the feature information which 
can be applied to the wireless sensor network intrusion detection. 

(2) The attacks of new type in wireless sensor networks are endless. How to improve the 
ability of intrusion detection system to detect unknown attacks is a problem that needs to be 
solved. 

(3) Wireless sensor network resources which include storage space, computing power, 
bandwidth and energy are limited. Limited storage means that a large number of system logs 
cannot be stored on sensor nodes. Intrusion detection system based on knowledge requires 
storing large amounts of defined intrusion patterns and detects intrusion through pattern 
matching. This method needs to store invasion behavior characteristics, and feature library 
will increase with the increase of invasion type. Limited computing power means that an 
intrusion detection algorithm with large amount of computing is not suitable for running on 
nodes. The current wireless sensor networks adopt low-speed and low-power-consumption 
communication technologies. the characteristics of limited energy request intrusion detection 
systems not to bring too much communication overhead. This is less considered in the 
traditional computer network. 

The following is a brief introduction to the existing wireless sensor network intrusion 
detection technologies. Onat and Miri proposed an intrusion detection system for resource 
depletion attacks [8]. Roman et al. designed a framework for the application of intrusion 
detection system (IDS) in wireless sensor networks [9]. Martynov et al. proposed an intrusion 
detection model for wireless sensor network based on agents [10], and Al-Yaseen et al. put 
forward a real-time multi-agent based adaptive intrusion detection system [16]. Drozda 
studied an intrusion detection technology based on artificial immune system - the SNS model 
[11], to solve problems of discarding, packets delay forwarding and wormhole attacks. 
Schaust et al. applied principles of the degenerate behavior of T-cell receptors from artificial 
immune systems to wireless sensor networks, and proposed the misuse detection model [12]. 
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Kim et al. proposed an interest cache poisoning attack for directed diffusion (DD) routing 
protocol in wireless sensor networks, and presented a detection method for this attack by 
dendritic cell algorithm (DCA) [13]. Wazid et al. put forward a hybrid anomaly detection 
scheme using K-means clustering to detect blackhole attack and misdirection attack in 
wireless sensor networks [14]. Ma et al. proposed a spectral clustering and deep neural 
network based intrusion detection algorithm, and verified the algorithm in the datasets of 
KDDCUP99 and NSL-KDD [15]. Gunasekaran et al. proposed a genetic algorithm based 
intrusion detection model to solve the denial-of-sleep attack in wireless sensor networks [20]. 
Shi et al. put forward a dynamic programming model for internal attack detection in wireless 
sensor networks through continuous time Markov chain and the epidemic model to optimize 
the detection rate [27]. Zeeshan et al. proposed an anomaly detection system (ADS) 
framework to detect Sybil attack which causes data flow anomaly in WSNs [28]. 

Through analysis of the existing wireless sensor network intrusion detection schemes, 
research on intrusion detection technology in WSNs is not very mature, and the above 
detection systems are mostly transplanted from traditional network intrusion detection 
technologies. There are three problems. Firstly, nodes are in promiscuous mode, which 
prevents them into sleep and force them into the idle or receiving state, which extremely 
consumes energy. Secondly, the intrusion detection model is deployed on a single sensor node, 
which greatly consumes resources. Thirdly, the intrusion detection model is aimed at specific 
attacks, and the universality needs to be improved. 

Inspired by the danger theory in the biological immune system, this paper proposes an 
intrusion detection model based on the danger theory for wireless sensor networks, named 
DT-IDM. The main contributions of this model are as follows. (1) The model abstracts 
expressions of antigens and antibodies in wireless sensor networks, defines meanings and 
functions of danger signals and danger areas, and expounds the process of intrusion detection 
based on the danger theory. (2) The model realizes the distributed deployment, and there is no 
need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger 
signals according to their own environmental information, and do not need to communicate 
with other node, which saves resources. When danger is perceived, the model acquires the 
global knowledge through node cooperation, and can perform more accurate real-time 
intrusion detection. The performance of the model is analyzed including scalability, 
robustness and complexity, and experimental results show that the model has good detection 
performance and reduces energy consumption.  

The remainder of this paper is organized as follows. The related work which is also the 
background of this paper is described in Section 2. The theories of the model including 
description of the architecture, definitions of the model, implementation mechanisms of 
danger signal and danger area, and implementation mechanism of decision and response are 
described in Section 3. The performance is analyzed in Section 4. The effectiveness of 
DT-IDM is verified in Section 5. Finally, the conclusions and future works are given in the last 
section. 

2. Related Work 

2.1 Typical Attacks of WSNs 
The following is a brief introduction to typical attacks of wireless sensor networks at the 
protocol level. 
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(1) Physical layer attack 
Physical layer attacks mainly include jamming attacks and physical capture attacks. In the 

jamming attack, the attacker keeps transmitting blocking signals in the working band of 
wireless sensor networks, so that sensor devices in the communication radius of the attacker 
node cannot work properly. Sensor nodes which are deployed in harsh environments are easily 
captured by attackers, and attackers can obtain sensitive information in multiple ways for the 
captured sensor nodes. 

(2) Link layer attack 
The work of the data link layer focus on data frame monitoring, data flow multiplexing, 

media access and error control, which guarantees point-to-point or point-to-multipoint 
connection reliability. Typical attacks on the link layer include resource depletion attacks, 
collision attacks, unfair attacks, etc. 

Resource depletion attacks require the attacker to be part of the network, and are primarily 
for wireless sensor nodes with limited energy. The attacker can modify the conflict avoidance 
mechanism to consume other nodes' energy. The collision attacker listens to the channel for 
information transmission. When there is information to transmit, the attacker launches 
interference signals which will collide with the legitimate information.  Unfair attack is a weak 
form of denial of service (DOS) attack. 

(3) Network layer attack 
The network layer is responsible for routing the data provided by the transport layer. 

Typical attacks on the network layer mainly include neighbor discovery protocol attack, sybil 
attack, selective forwarding attack, wormhole attack, sinkhole attack, etc. 

The neighbor discovery protocol attackers enable target nodes to believe that they provide 
network functions, so that the nodes could not obtain the correct network topology perception, 
and could also be overloaded. The famous hello flood attack belongs the neighbor discovery 
protocol attack. Sybil attack refers to that the attacker declares multiple identities and fakes 
multiple legal nodes, to destroy the voting mechanism, or to reduce the performance of the 
fault-tolerant mechanism such as multi-path routing, topology maintenance. The selective 
forwarding attack refers to that the attacker as the route node to forward data chooses to 
discard or forward packets selectively. The wormhole attackers transmit messages which are 
received from an area of the network through high-speed tunnel to other areas, in order to 
disrupt the routing or attract forwarding messages. The target of sinkhole attackers is to attract 
data streams in a region through broadcasting high quality routing information. 

(4) Application layer attack 
The application layer is responsible for implementing functions which are required for 

particular applications, such as integrating the data from the collection. Application layer 
attack is related to specific applications, such as location attack, malicious code, etc. 

2.2 Intrusion Detection Characteristics of WSNs 
Before the intrusion detection algorithm is implemented, it is necessary to analyze the node’s 
local log, communication data packet and network behavior, and extract the characteristics for 
intrusion detection. The detection features are the basis of wireless sensor network intrusion 
detection, and the detection algorithm can identify attacks by finding the abnormal 
characteristics. The characteristics of wireless sensor networks are briefly described below. 

Physical layer features include: energy reduction rate, cache occupancy rate, and RSS. The 
characteristics of link layer include: packet collision rate, packet avoidance interval, packet 
avoidance times, RTS message frequency, data frame transmission success rate, data frame 
receiving rate, and data frame transmission rate. Features of network layer include: routing 
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request message frequency, the success rate, packet retransmission rate, routing overhead 
change, packet receiving rate, packet type distribution, packet arrival rate, packet delay, packet 
forwarding rate, throughput capacity, and package integrity. The application layer 
characteristics mainly include: perception data change and perception data arrival rate. 

2.3 Danger Theory 
The danger theory proposed by biological immunologist Matzinger [17] believes that there are 
two death manners for cells in biological immune system which are apoptosis and necrosis. 
Apoptosis is a natural process, and is the result of environmental regulation in the body. 
Necrosis is irregular death associated with stress cells or other means. This approach of death 
will lead to specific biochemical reactions of the body, is different from natural rules, and will 
produce distinct degrees of danger signals which form the basis of the immune response. Thus, 
the biological system produces danger signals, then conducts the immune response according 
to changes in the environment. Danger signals build a danger zone around them, where 
immune cells will be activated to take part in immune responses. Compared with the 
traditional CLONALG theory, danger theory introduces environmental factors of the body, 
describes some important characteristics of the biological immune system, and explains some 
immune phenomena which the traditional theory cannot explain, such as autoimmune 
diseases. 

Compared with the traditional Self-Nonself (SNS) model, the main difference between the 
two is that they have different explanations for activation conditions of antigen presenting 
cells. The SNS model suggests that antigen presenting cells are activated by the identification 
of external pathogens, and the danger theory believes that the root cause of the immune 
response is the danger signal issued by the damage or accidental death of organisms. Although 
there is still controversial about the danger theory in the traditional biological immune field, it 
gets rid of some limitations of the SNS model. The exogenous pathogens do not play a 
decisive role in triggering immune responses, but only perceiving damages of body cells will 
do the job. So, the danger theory is more suitable for the intrusion detection field than the SNS 
model [18,19]. 

Table 1 lists the concepts mapping of danger theory and the intrusion detection system in 
wireless sensor networks. 
 

Table 1. Mapping of danger theory and the intrusion detection system 

Danger theory The intrusion detection system 

Gene segments The normal traffic information of nodes  

Antigens Consist of genes, the key information extracted from traffic 

packets 

Antibodies the same structure with antigens, and are generated by sink node  

Apoptosis Nodes can't work due to normal reasons such as energy depletion  

Necrosis Nodes can't work due to invasion or network anomalies 

Lymphocytes Sensor nodes and sink nodes  

APC Nodes cooperate to acquire global invasion or abnormal 
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information 

Danger signals Node’s local environmental status affected by invasion or 

network anomalies  

Danger areas Set of nodes which are greatly affected by invasion or network 

anomalies 

3. Model Description 

3.1 Architecture of Intrusion Detection System 
A typical wireless sensor network consists of sink nodes and sensor nodes [1-5]. Sensor nodes 
can be distributed in the monitored area by means of artificial placement or maybe spread by 
aircraft, and so on. And they can form a network through self-organization routing protocols 
such as clustering-based protocols, data-centered protocols. Each sensor node can collect data 
independently, and the collected data is sent to the sink node through single hop or multi hop 
relay. Sink node has numerous resources, and deals with data sent by sensor nodes. In the 
hierarchical wireless sensor networks, clustering-based routing protocol is adopted, and sensor 
nodes are divided into cluster heads and cluster members [24-26]. 

If each sensor node runs a complete testing instance at the same time, it will cost a lot of 
resources for the node. It is not proper. Therefore, the intrusion detection system proposed in 
this paper adopts the distributed structure. The system is divided into three levels, the 
application layer, the immune layer and the wireless sensor network layer. The detection 
model is scattered on the immune layer, including the danger perception module, antigen 
presentation module, decision module and intrusion response module. The danger perceiving 
module and the antigen presenting module are deployed on the sensor nodes, including cluster 
heads and cluster members. Decision module and intrusion response module are deployed on 
the sink node. As shown in Fig. 1. 
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Fig. 1. The architecture of proposed intrusion detection system 

 
The detection process of the model is described as follows, and Table 2 shows the process. 

Firstly, cluster heads and cluster members detect changes of their own properties, extract the 
key data, and obtain the signal information of the current environment to perceive the risk. 
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When danger is perceived, cluster member transmits the danger signal to cluster head, cluster 
head integrates multiple danger signals and finally passes to the sink node. Then, sink node 
computes the degree of risk and the range of the risk domain, and demands presenting antigens. 
Sensor nodes within the danger area work together to collect the network traffic information 
for forming antigens. After that, the sink node generates antibodies to carry out immune 
responses, and decides whether an intrusion occurs. If an intrusion occurs, the response is 
taken, and the feedback information are sent to the network.  

 
Table 2. The detection process of the model 

Begin  
Sink node generates mature detector set T, and parameters are set: matching threshold 𝜃, danger 

threshold 𝜀 and the max age of detectors agemax; 
Initialize each sensor node vector Vi; 
While the program has not reached the termination condition do 

While  the value of sensor node danger signal |𝐷𝑆𝑖(𝑡)| does not reach 𝜀 for cluster heads and 
cluster members do 

Cluster heads and cluster members periodically sample the environmental information DSij(t), 
and add it to the node vector Vi; 

End; 
The danger signal is routed to sink node; 
Sink node computes the range of the danger area D(Ndi), and asks for presenting antigens; 
Sensor nodes within the risk domain cooperate to collect network information to form antigen ag;  
Mature detectors carry out immune responses;  
If intrusion is determined then 

the system notifies sensor nodes;  
        End if; 
    End; 
End;  
 

Fig. 2 shows the process.  

 
Fig. 2. Intrusion detection process 

 

3.2 Model Definition 
In wireless sensor networks, all the information in the end can be reduced to a binary string. In 
fact, intrusion detection is classification of the binary string according to certain rules and 
priori knowledge. Define the problem state space 𝛺 =∪𝑖=1∞ {0,1}𝑖. Based on the biological 
immunity, wireless sensor networks are defined as organisms, and sensor nodes are defined as 
immune tissues. Define the antigen set AG ⊂ Ω.  
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Definition 1. An antigen is the structured characteristic vector in the solution space of the 
artificial immune system domain [21]. In this model, the antigen ag consists of multiple genes, 
and is represented by a binary string. Genes are extracted from key fields of packets 
broadcasted by neighbor nodes, and include attributes of the MAC layer and the network layer. 
Specifically, the gene contains the node address, the next-hop destination address, the packet 
source address, the packet destination address, the packet size, the MAC frame type, etc. 
Packets from the same node will be abstracted as the same kind of antigens. Define the antigen 
ag={(g1, g2,…, gm)|gi∈{0,1}li, i=1,2,…,m, li is the length of gi}. The set of all antigens in the 
space is expressed as 𝐴𝐺 =∪𝑖=1∞ {𝐴𝑔𝑖}. 

It is assumed that normal strings that can be recognized by the model are defined as self set 
S, all the unknown strings are defined as N, abnormal strings that produce danger signals are 
defined as D, and strings that are judged as invasions are defined as I. 

Then, 𝑆 ∩ 𝑁 = ∅, 𝑆 ∪ 𝑁 = 𝐴𝐺 . Danger theory does not distinguish between self and 
non-self, only recognizes intrusion set 𝐼 = 𝐷 ∩𝑁 which triggers immune responses, and does 
not respond to harmless set 𝐷 ∩ 𝑆. 

Definition 2. Antibodies have the same structure with antigens, and are protein molecules 
which are secreted by antigen-stimulated B lymphocytes. They can be combined with specific 
antigens, and are used to detect and match antigens. In the model, antibodies are generated by 
sink node, and can perform immune responses after immune tolerance. Define antibody ab = 
{(g1, g2,…, gm)|gi∈{0,1}li, i=1,2,…,m, li is the length of gi}. The set of antibodies is expressed 
as 𝐴𝐵 =∪𝑖=1∞ {𝐴𝑏𝑖}. 

Definition 3. The affinity between an antibody and an antigen is expressed as Affinity(ag, 
ab), and represents the binding strength of the antibody and antigen. In this paper, an improved 
r-continuous bit matching method is adopted. 

 

Affinity(ag, ab) = �1,     ∑ 𝑓(𝑎𝑏.𝑚
𝑖=1 𝑔𝑖 ,𝑎𝑔)/𝑚 ≥ 𝜃

0,    𝑜𝑡ℎ𝑒𝑟𝑠
�                           (1) 

 
Where 𝜃 is the matching threshold, and f(x, y) is the r-continuous bit matching method for 

antibody’s gene segment gi and antigen ag. 
 

𝑓(𝑥,𝑦) =

�1, ∃𝑖, 𝑗, 𝑗 − 𝑖 ≥ |𝑥|, 0 < 𝑖 ≤ 𝑗 ≤ 𝑚 ∙ (𝑙 + 1), 𝑥𝑖 = 𝑦𝑗 , 𝑥𝑖+1 = 𝑦𝑗+1, … , 𝑥|𝑥| = 𝑦𝑗+|𝑥|−1
0, 𝑜𝑡ℎ𝑒𝑟𝑠

�    (2) 

 
The purpose of intrusion detection is to distinguish patterns: for an input schema x, 𝑥 ∈ 𝐴𝐺, 

the system detects and determines this schema belongs to self or non-self. The detection 
system can be expressed as IDS = (F, M). F is the classification function, and M is a collection 
of detector information patterns extracted from 𝛺. The system may have two errors in the 
detection process: false negative, sorting non-self to be self, 𝜑− = {𝑥 ∈ 𝑁 ∩ 𝐹(𝑥,𝑀) =
𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠}; false positive, sorting self to be non-self, 𝜑+ = {𝑥 ∈ 𝑆 ∩ 𝐹(𝑥,𝑀) = 𝑛𝑜𝑟𝑚𝑎𝑙}. 

3.3 Danger Signals 
Danger theory emphasizes that danger signals which are produced by environmental changes 
are used to guide different levels of immune responses, and zones around danger signals are 
regarded as danger areas. Because the danger signal is related to the environment, changes of 
sensor nodes’ attributes reflect the environmental status in wireless sensor networks. Nodes do 
not need to communicate with surrounding nodes, only use local knowledge for statistics. This 
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reduces the amount of data and network traffic, and will not generate additional 
communication overhead. Nodes only collect information in their own work time, and do not 
need additional wake-up operation, which will not bring too much energy consumption. 

When nodes are under attack or network is abnormal, characteristics of the physical layer 
and link layer change more obviously. The energy decline rate of sensor node DSi1(t), the 
packet avoidance frequency DSi2(t), the average packet avoidance duration DSi3(t), the 
receiving frequency of frames DSi4(t) and the transmission frequency of frames DSi5(t), these 
characteristics’ values vary greatly. And nodes can get these attributes’ values in the local. 
Therefore, we select statistical values of these attributes to reflect the danger signal DS. 

The energy decline rate of sensor node DSi1(t) is express as follows. When the DOS attack 
occurs, the value of this property changes greatly. 

 
𝐷𝑆𝑖1(𝑡) = ∑ 𝑃𝑡+∆t

𝑡 /∆𝑡                                                    (3) 
 

Where, ∑ 𝑃𝑡+∆t
𝑡  is the normalized value of energy changes in the time interval ∆𝑡. 

The packet avoidance frequency DSi2(t) is expressed as follows. In wireless sensor networks, 
the protocols used in the link layer are mostly based on competing MAC protocols. This 
property is more sensitive when packet jamming attack occurs. 

 
𝐷𝑆𝑖2(𝑡) = ∑ 𝑁𝑑𝑡+∆𝑡

𝑡 /∆𝑡                                                    (4) 
 

Where, ∑ 𝑁𝑑𝑡+∆𝑡
𝑡  is the normalized value of the escape times of frames in the time interval 

∆𝑡. 
The average packet avoidance duration DSi3(t) is expressed as follows. This property 

changes greatly when the blocking attack occurs. 
 

𝐷𝑆𝑖3(𝑡) = ∑ 𝑇𝑑𝑡+∆t
𝑡 /∆𝑡                                                  (5) 

 
Where,  ∑ 𝑇d𝑡+∆t

𝑡  is the normalized value of fallback duration of frames in the time interval 
∆𝑡. 

The receiving frequency of frames DSi4(t) is expressed as follows. The abnormal change of 
the receiving frequency of frames implies the danger. For example, when the node is the attack 
target, the number of the received data frames increases and the value of the receiving 
frequency increases. 

 
𝐷𝑆𝑖4(𝑡) = ∑ 𝑁𝑟𝑡+∆𝑡

𝑡 /∆𝑡                                                  (6) 
 

Where, ∑ 𝑁𝑟𝑡+∆𝑡
𝑡  is the normalized value of the number of received data frames in the time 

interval ∆𝑡. 
The transmission frequency of frames DSi5(t) is expressed as follows. Abnormal change of 

the transmission frequency of frames also implies the risk. For example, when large-scale 
worm attacks or blocking attacks occur, nodes usually need to forward these malicious packets, 
which results in the number of transmission frames increasing and the transmission frequency 
increasing. While sinkhole attacks occur, routing nodes which are originally normal will no 
longer transmit data, which leads to the number of transmission frames plummeting and the 
transmission frequency dropping.  

 
𝐷𝑆𝑖5(𝑡) = ∑ 𝑁s𝑡+∆t

𝑡 /∆𝑡                                                 (7) 
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Where, ∑ 𝑁𝑠𝑡+∆𝑡

𝑡  is the normalized value of the number of transmission frames in the time 
interval ∆𝑡. 

Suppose that 𝑆𝑖𝑗(𝑡) = �𝐷𝑆𝑖𝑗(𝑡) −𝐷𝑆𝑖𝑗(𝑡 − 1)� is the changed amount of the property DSij 
in the time t. 

Definition 4. danger signal DSi(t) is expressed as follows. 
 

DSi(t)=<Ndi, t,{ 𝑆𝑖𝑗(𝑡)| j=1,2,…,5}>                                    (8) 
 

Where, Ndi is the sensor node i. |𝐷𝑆𝑖(𝑡)| is the value of danger signal in the time t, and is 
expressed as follows. 

 
|𝐷𝑆𝑖(𝑡)| = �∑ 𝑤𝑗 ∙ (𝐷𝑆𝑖(𝑡).5

𝑗=1 𝑆𝑖𝑗(𝑡))�/∑ 𝑤𝑗5
𝑗=1                           (9) 

 
wj is the weights of danger signal attributes. Because 0 ≤ 𝐷𝑆𝑖(𝑡). 𝑆𝑖𝑗(𝑡) ≤ 1 , 0 ≤

|𝐷𝑆𝑖(𝑡)| ≤ 1. When the value of |𝐷𝑆𝑖(𝑡)| is greater than the danger threshold 𝜀, the sensor 
node will route danger signals to the sink node.  

3.4 Danger Areas 
According to the danger theory, if an antigen Agi is in necrosis, the surrounding area around 
Agi will become the danger area D(Agi). For the intrusion detection, when a node is attacked or 
the network is abnormal, we take the area near the node Ndi as the danger area D(Ndi). The 
range of the risk region defines the extent of the immune response, and immune cells in this 
range will be activated and involved in the immune response.  

Definition 5. Danger area D(Ndi) is defined as follows. 
 

D(Ndi)={Ndj|DIS(Ndi, Ndj)<Rdangeri ∩ (𝑁𝑑𝑗 is cluster head ∪ 𝑗 = 𝑖)}       (10) 
 

Where, DIS(Ndi, Ndj) is the distance between node i and node j, and is expressed as (11). 
Rdangeri is the radius of the danger zone of node i, and is expressed as (12). Then, D(Ndi) 
represents the set of the node i and the head nodes of clusters whose distances from node i are 
smaller than the radius of the danger zone. 

 

DIS(Ndi, Ndj)= �
0    if 𝑖 = 𝑗 

1 (𝑁𝑙𝑒𝑎𝑝𝑚𝑎𝑥 + 1)⁄    𝑖𝑓 𝑖 ≠ 𝑗 ∩ 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑁𝑙𝑒𝑎𝑝 (𝑁𝑙𝑒𝑎𝑝𝑚𝑎𝑥 + 1)⁄    𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

�   (11) 

 
Nleapmax is the maximum number of hops between clusters in wireless sensor networks. If i=j, 

Nleap is 0; if the node i and node j are different and in the same cluster, Nleap is 1; if the node i 
and node j are not in the same cluster, Nleap is the number of hops between the cluster where the 
node i is and the cluster where the node j is plus 1. Therefore, 0 ≤ DIS(Ndi, Ndj) ≤ 1. 

 
Rdangeri =∑

1
𝐷𝐼𝑆�𝑁𝑑𝑖,𝑁𝑑𝑗�+1

∙ |𝐷𝑆𝑗(𝑡)|/𝑤𝑑𝑠
𝑁𝑑𝑠
𝑗=0                               (12) 

 
Nds is the number of danger signals received by the sink node in the time t. wds is the danger 

radius coefficient, and is used to adjust the size of the risk radius.  
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Obviously, the radius of the danger area is related to the strength of danger signal and the 
surrounding environment of the node. When the node’s danger signal is stronger, it indicates 
that the node’s environment is damaged or the probability of being damaged is larger, and the 
range of danger area is larger. The danger signals emitted by surrounding nodes will also affect 
the range of the risk area of the node. The more the number of nodes which send out danger 
signals is, the greater the changes of the surrounding environment are, and the bigger the range 
of risk area of the node is. The smaller the distance between the node and other nodes that send 
out danger signals is, the greater the impact on the risk area of the node is. 

3.5 Decisions and Responses 
When the sink node receives the antigen information, the immune response will be carried out. 
The process of immune response uses the traditional self-non-self identification, and the 
system calculates the affinity between antigens and antibodies to determine whether an 
invasion has occurred. The antibody corresponds to the mature detector in the intrusion 
detection algorithm, and the antigen corresponds to the network information that needs to be 
detected. 

Definition 6. Detector set is expressed as 𝐵 = {< 𝑎𝑏,𝑎𝑔𝑒 >  | 𝑎𝑏 ∈ 𝐴𝐵 ∩ 𝑎𝑔𝑒 ≤
𝑎𝑔𝑒𝑚𝑎𝑥}. Where, ab is the antibody of detector, age is the age of detector, and agemax is the 
max age.  

Detectors are divided into immature ones and mature ones. We use Fig. 3 to represent the 
model’s immune mechanism. The model first produces a new immature detector through 
genetic coding. The immature detector evolves into a mature detector through the negation 
selection. If it matches the self in the tolerance period, it will die. The mature detector has a 
fixed length of life cycle. If it is activated by the danger signal during the life cycle, the clone 
selection operation is carried out. Otherwise it would be killed. 

 

Fig. 3. The model’s immune mechanism 
 

Set of Immature detectors are expressed as 𝑈 = {𝑥|𝑥 ∈ 𝐵 ∩ 𝑥.𝑎𝑔𝑒 < 𝛾} . Where 𝛾 
simulates the tolerance period. The following is the evolution model of the immature detector 
set. 

 

𝑈(𝑡) = �
∅,     𝑡 = 0

𝑓𝑎𝑔𝑒(𝑈(𝑡 − 1) − 𝑈𝑢𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒(𝑡) ∪ 𝑈𝑚𝑎𝑡𝑢𝑟𝑒𝑑(𝑡)) ∪ 𝑈𝑛𝑒𝑤(𝑡),     𝑡 > 0�      (13) 
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𝑈𝑢𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒(𝑡) = {𝑥|𝑥 ∈ 𝑓𝑎𝑔𝑒(𝑈(𝑡 − 1)) ∩ ∃𝑦 ∈ 𝑆(𝑡 − 1)(𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑥.𝑎𝑏,𝑦) = 1)} (14) 
𝑈𝑚𝑎𝑡𝑢𝑟𝑒𝑑(𝑡) = {𝑥|𝑥 ∈ 𝑓𝑎𝑔𝑒(𝑈(𝑡 − 1) −𝑈𝑢𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒(𝑡)) ∩ 𝑥.𝑎𝑔𝑒 > 𝛾}        (15) 

 
Where, 𝑈(𝑡),𝑈(𝑡 − 1) ⊂ 𝑈  represent the immature detector sets in the time t and t-1 

respectively. 𝑓𝑎𝑔𝑒(𝑋)(𝑋 ⊂ 𝐵) is the adding 1 operation to the age of each detector in X. 
𝑈𝑢𝑛𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒(𝑡)  is the set of immature detectors which do not pass the self-tolerance. 
𝑈𝑚𝑎𝑡𝑢𝑟𝑒𝑑(𝑡) is the set of immature detectors which pass the self-tolerance. 𝑈𝑛𝑒𝑤(𝑡) the set of 
immature detectors which are newly generated in the time t. S(t) is the self set in the time t. 
Set of mature detectors are expressed as 𝑇 = {𝑥|𝑥 ∈ 𝐵 ∩ 𝛾 ≤ 𝑥.𝑎𝑔𝑒 < 𝑎𝑔𝑒𝑚𝑎𝑥 ∩ ∀𝑎𝑔 ∈
𝑆(𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑎𝑔, 𝑥.𝑎𝑏) > 𝜃)}. The following is the evolution model of the mature detector set. 
 

𝑇(𝑡) =

�
∅,     𝑡 = 0

(𝑓𝑎𝑔𝑒(𝑇(𝑡 − 1)) − (𝑇𝑑𝑒𝑎𝑑(𝑡) ∪ 𝑇𝑐𝑙𝑜𝑛𝑒𝑑(𝑡))) ∪ 𝑈𝑚𝑎𝑡𝑢𝑟𝑒𝑑(𝑡) ∪ 𝑇𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑡),     𝑡 > 0�    

(16) 
𝑇𝑑𝑒𝑎𝑑(𝑡) = {𝑥|𝑥 ∈ 𝑓𝑎𝑔𝑒(𝑇(𝑡 − 1)) ∩ 𝑥.𝑎𝑔𝑒 = 𝑎𝑔𝑒𝑚𝑎𝑥 ∩ ∄𝑦 ∈ 𝑁(𝑡 − 1)(𝑥 ∈ 𝐷(𝑦))} (17) 
𝑇𝑐𝑙𝑜𝑛𝑒𝑑(𝑡) = {𝑥|𝑥 ∈ (𝑓𝑎𝑔𝑒�𝑇(𝑡 − 1)� − 𝑇𝑑𝑒𝑎𝑑(𝑡)) ∩ ∃𝑦 ∈ 𝑁(𝑡 − 1)(𝑥 ∈ 𝐷(𝑦))}      (18) 

𝑇𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑡) = 𝑓𝑐𝑙𝑜𝑛𝑒_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑇𝑐𝑙𝑜𝑛𝑒𝑑(𝑡) ∪ 𝑀𝑐𝑙𝑜𝑛𝑒𝑑(𝑡))           (19) 
 

Where, 𝑇(𝑡),𝑇(𝑡 − 1) ⊂ 𝑇  represent the mature detector sets in the time t and t-1 
respectively. 𝑇𝑑𝑒𝑎𝑑(𝑡) is the set of mature detectors which are not activated when the life cycle 
ends. 𝑇𝑐𝑙𝑜𝑛𝑒𝑑(𝑡)  is the set of mature detectors which are activated by danger signals. 
𝑈𝑚𝑎𝑡𝑢𝑟𝑒𝑑(𝑡) the set of mature detectors which are newly matured. 𝑇𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑡) is the set 
of mature detectors which are newly generated by clone and mutation operations. 
𝑓𝑐𝑙𝑜𝑛𝑒_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑋)(𝑋 ⊂ 𝑇) is the clone selection function, and performs clone and mutation 
operations on each detector in X. 

In the process of antibody tolerance, if 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑎𝑔, 𝑥.𝑎𝑏) = 1, the immature detector can 
describe self which triggers immune self-reaction, and must be removed; after the generation 
process, remaining detectors only describe elements in the non-self collection. In the process 
of intrusion detection, if 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑎𝑔, 𝑥.𝑎𝑏) = 1, the antigen ag can be described by the 
detector x, which means ag belongs to the non-self space, and intrusion occurs. In the event of 
an invasion, response measures, including speed limit, isolation, and human intervention etc., 
are taken. 

4. Performance Analysis 

4.1 Complexity Analysis 
This section analyzes the resource consumptions of the model from three aspects, the 
computational complexity, storage and communication traffic. 

In this model, the computational complexity of sensor nodes obtaining danger signals from 
current environment is O(|L|), the complexity of the sink node calculating values of danger 
signals and the radiuses of danger zones is O(|L|), the complexity of sensor nodes performing 
antigen presenting is O(|L|), and the complexity of the sink node conducting immune response 
is O(|L|2). So the computational complexity of this algorithm is O(3|L|+ |L|2), and |L| is the 
number of nodes in the system. 
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For sensor nodes, only the values of danger signal attributes need to be stored, and the 
storage complexity is O(|DS|). For the sink node, it is required to maintain and store the 
antibody set, and the storage complexity is O(|B|).  

In the process of intrusion detection, communications between sensor nodes do not take 
special data transmission channel, and run only in the node working time. The communication 
data contains the three tuple of sensor nodes’ danger signals <Ndi, t, {Sij(t)| j=1,2,…,5}> and 
the three tuple of antigen presenting information <Ndi, t, {(g1, g2,…, gm)}>.  
4.2 Detection Efficiency Analysis 
The number of all antigens in the problem space is NAg, the number of selves is NSelf, the 
number of training selves is Ns, and the number of detectors is Nd. The matching probability 
between any given detector and any antigen is P’, which is related to the specific matching rule 
[6,7]. P(A) is defined as the probability of event A occurring. 

Theorem 1. For any detector which passes the self-tolerance, the probability of matching an 
undescribed self is 𝑃𝑑 = (1 − 𝑃′)𝑁𝑠 ∙ (1 − (1 − 𝑃′)𝑁𝑆𝑒𝑙𝑓−𝑁𝑠) . For any given non-self, the 
probability of correct identification is 𝑃𝑡𝑝 = 1− (1− 𝑃′)𝑁𝑑∙(1−𝑃𝑑), the probability of wrong 
identification is 𝑃𝑓𝑛 = (1 − 𝑃′)𝑁𝑑∙(1−𝑃𝑑) . For any given self, the probability of correct 
identification is 𝑃𝑡𝑛 = (1− 𝑃′)𝑁𝑑∙𝑃𝑑 , the probability of wrong identification is 𝑃𝑓𝑝 = 1 −
(1 − 𝑃′)𝑁𝑑∙𝑃𝑑 . 

Prove. It is known from the proposition that a given detector passes the self-tolerance, 
which indicates that the detector does not match any self in the self training set. Set event A is 
“the given detector does not match any self in the self set,” and event B is “the given detector 
matches at least one undescribed self”. Pd=P(A)P(B). In the event A, the times of detectors 
matching with selves satisfy the binomial distribution, 𝑋~𝑏(𝑁𝑠 ,𝑃′) . Then, 𝑃(𝐴) =
𝑃(𝑋 = 0) = (1 − 𝑃′)𝑁𝑠 . In the event B, the times of detectors matching with undescribed 
selves satisfy the binomial distribution, 𝑌~𝑏(𝑁𝑆𝑒𝑙𝑓 − 𝑁𝑠 ,𝑃). Then, 𝑃(𝐵) = 1− 𝑃(𝑌 = 0) =
1 − (1 − 𝑃′)𝑁𝑆𝑒𝑙𝑓−𝑁𝑠 . Therefore, 𝑃𝑑 = 𝑃(𝐴)𝑃(𝐵) = (1− 𝑃′)𝑁𝑠 ∙ (1− (1− 𝑃′)𝑁𝑆𝑒𝑙𝑓−𝑁𝑠). 

Set event E is “the given non-self matches at least one detector in the set of detectors”. In the 
event E, the times of non-selves matching with detectors satisfies the binomial distribution 
𝑍~𝑏(𝑁𝑑 ∙ (1 − 𝑃𝑑),𝑃′) . Then, 𝑃𝑡𝑝 = 𝑃(𝐸) = 1 − 𝑃(𝑍 = 0) = 1 − (1 − 𝑃′)𝑁𝑑∙(1−𝑃𝑑) , 
𝑃𝑓𝑛 = 1− 𝑃𝑡𝑝 = (1− 𝑃′)𝑁𝑑∙(1−𝑃𝑑). 

Set event F is “the given self does not match any detector in the set of detectors”. In the 
event F, the times of selves matching with detectors satisfies the binomial distribution 
𝑊~𝑏(𝑁𝑑 ∙ 𝑃𝑑 ,𝑃′). Then, 𝑃𝑡𝑛 = 𝑃(𝐹) = 𝑃(𝑊 = 0) = (1 − 𝑃′)𝑁𝑑∙𝑃𝑑 , 𝑃𝑓𝑝 = 1− 𝑃𝑡𝑛 = 1−
(1 − 𝑃′)𝑁𝑑∙𝑃𝑑 .Proved. 

Fig. 4 and Fig. 5 is the matlab simulations of Theorem 1. The detector rate DR=Ptp and the 
false alarm rate FAR=Pfp are related to the detector self-reaction rate P’, the number of mature 
detectors Nd, the number of training selves Ns and the number of selves Nself. For specific 
matching rules, P’ is a constant [29]. In particular, for r-continuous bit matching rule, 
𝑃′ = 0.025625 [29,30]. For the identified problem space, Nself can be viewed as a fixed value. 
So, we mainly consider influences of Ns and Nd on Ptp and Pfp. As can be seen from the figures, 
when Ns and Nd are smaller, Ptp is smaller and tends to 0, and Pfp is larger. With the increases of 
Ns and Nd, Ptp gradually increases and Pfp gradually decreases. 
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Fig. 4. The influences of Ns and Nd on Ptp 

 

 
Fig. 5. The influences of Ns and Nd on Pfp 

5. Experimental Results and Analysis 
This section verifies the validity of the model through simulation experiments. Experiments 
use TOSSIM as the simulator for tests. It is a component-based and modular discrete event 
simulation tool, which is from TinyOS and suitable for the simulation of wireless sensor 
networks [22,23]. Sensor nodes are randomly distributed in the network and the network 
parameters are shown in Table 3. 
 

Table 3. Experimental network parameters 
parameters defaulted values 

Size of network deployment area(m2) 1000*1000 
Radius of node communication(m) 100 

The number of nodes 200 
MAC protocol IEEE802.15.4 

Routing protocol LEACH 
Communication rate(kbps) 250 

Length of data packets(byte) 128 
Interval of detection time(s) 60 
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Attacks on the wireless sensor network are mostly one or several-mixed types. We choose 
several common attacks for the experiments, including resource depletion attack, sybil attack, 
selective forwarding attack, wormhole attack, sinkhole attack, etc. Experiments are performed 
under the above five kinds of attacks, each attack runs 10 times for simulations, changes of the 
network within 2 hours are collected, and averaged results were acquired. 

Experiments use the detection rate DR, the false positive rate FAR and the system energy 
consumption index EC to measure the performance of the model, and compare with the SNS 
model. The SNS model [14] is a wireless sensor network intrusion detection model based on 
the artificial immune, which adopts the traditional theory of self-nonself, and runs an intrusion 
detection system on each node. The SNS model judges whether the invasion occurs through 
the clone selection algorithm, and each node judges separately. SNS model’s parameters are 
set as follows. The matching length r=7, the size of self-library is 256, the size of detector 
collection is 128, the initial value of matching threshold is 8, and the initial value of detector 
survival is 2. 

5.1 Deployment of the Proposed Model on 802.15.4 
IEEE 802.15.4 is a wireless communication network with low energy consumption, simple 
structure and easy implementation [29]. It provides a detailed description of the physical layer 
and MAC layer of wireless sensor networks. In this network, according to the communication 
capability and hardware condition of the device, it can be divided into full-function device 
(FFD) and reduced-function device (RFD). Compared with RFD, FFD is much better than 
RFD in terms of hardware. For example, FFD uses direct power, while RFD uses battery 
power; in terms of communication, FFD can communicate with all other FFD and RFD, while 
RFD can only communicate with FFD associated with it. In general, we call this FFD a 
coordinator for the RFD device. Throughout the network, an FFD acts as the network 
coordinator. 

It can be seen that there is a natural stratified structure in IEEE 802.15.4. We can use the 
point-to-point topological structure to cluster the network. RFD can be regarded as the cluster 
member, FFD can be regarded as the cluster head, and the PAN coordinator can be regarded as 
the sink node. According to the proposed model architecture, the risk perceiving module and 
antigen presenting module can be deployed on RFD and FFD, and decision and response 
modules can be deployed on the PAN coordinator. 

IEEE 802.15.4 includes the following requirements. Four different transmission rates are 
realized at different carrier frequencies. The CSMA/CA mechanism is used to solve the 
channel collision problem, and the ACK feedback mechanism is used to ensure reliable 
transmission of data. Therefore, the environmental status required to extract the danger signals 
and the data packets used for presenting antigens can be obtained locally by RFD and FFD. 

ZigBee technology is based on the IEEE 802.15.4 [30]. According to the specifications of 
ZigBee alliance, ZigBee extended the network layer and application layer on the basis of IEEE 
802.15.4. Therefore, the proposed model can also be conveniently deployed on the ZigBee 
network. 

5.2 Parameter Settings 
Table 4 lists comparisons of detection rates and false alarm rates of the model under different 
danger thresholds 𝜀 when a node is attacked in the network. Table 5 lists the performance 
comparisons of the model when 16 nodes in the network are attacked. The comparison here is 
to obtain a reasonable parameter value, and the system is in the learning stage. We examine the 
system status in the cases of fewer nodes under attacks and more nodes under attacks, and the 
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system can get better results with parameters in a certain interval. 16 is not an absolute number, 
but to show more nodes being attacked. In the real network, a case of more than 10 attack 
nodes can be seen more. It is shown that when the danger threshold is small, the model has a 
high detection rate and the false alarm rate is basically zero. At this time, the sink node 
receives more danger signals, and sensor nodes and the sink node communicate frequently, 
which increases the system’s energy consumption. When the danger threshold is large, the 
detection rate of the model decreases. At this time, when the number of attacked nodes is less, 
the false alarm rate is nearly zero, and when the number of attacked nodes is more, the false 
alarm rate increases. Danger signals from each sensor node have been accumulated over a long 
period of time. Although it can reduce energy consumption, it affects the real-time of the 
system. Therefore, the danger threshold is more appropriate between 0.3 and 0.5. 
 

Table 4. Effects on the model of different danger threshold 1 

Attack types  Danger thresholds 𝜀 
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Resource 
depletion 
attack 

DR% 
FAR% 

100 
0 

100 
0 

100 
0 

100 
0 

99.11 
0.21 

96.24 
0.13 

92.16 
0.63 

90.37 
1.20 

Selective 
forwarding 
attack 

DR% 
FAR% 

100 
0 

100 
0 

100 
0 

100 
0 

100 
0 

94.21 
3.25 

89.12 
2.32 

88.45 
4.56 

Sybil attack DR% 
FAR% 

100 
0 

100 
0 

100 
0 

100 
0 

98.20 
0.65 

95.43 
0.79 

92.47 
2.34 

88.32 
4.89 

Sinkhole 
attack 

DR% 
FAR% 

100 
0 

100 
0 

100 
0 

100 
0 

100 
0 

100 
0 

99.33 
1.21 

98.43 
1.80 

Wormhole 
attack 

DR% 
FAR% 

100 
0 

100 
0 

100 
0 

100 
0 

96.44 
0.63 

94.31 
0.99 

92.12 
2.86 

89.46 
3.75 

 
Table 5. Effects on the model of different danger threshold 2 

Attack types  Danger thresholds 𝜀 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Resource 
depletion 
attack 

DR% 
FAR% 

100 
0 

93.04 
2.10 

90.54 
4.91 

88.0 
7.90 

87.32 
8.11 

80.12 
11.76 

70.39 
15.33 

69.18 
20.92 

Selective 
forwarding 
attack 

DR% 
FAR% 

100 
0 

96.33 
2.02 

92.55 
3.23 

90.03 
4.54 

88.32 
5.49 

85.66 
10.87 

80.13 
15.61 

76.65 
15.33 

Sybil attack DR% 
FAR% 

100 
0 

90.54 
3.67 

85.14 
4.17 

82.63 
8.23 

79.15 
9.78 

76.20 
12.74 

70.11 
16.20 

65.38 
25.78 

Sinkhole 
attack 

DR% 
FAR% 

100 
0 

96.21 
2.05 

95.14 
3.08 

90.47 
5.28 

90.08 
5.0 

86.81 
8.22 

80.11 
13.64 

79.41 
15.62 

Wormhole 
attack 

DR% 
FAR% 

100 
0 

90.07 
5.14 

82.17 
8.09 

80.23 
10.14 

75.63 
12.77 

74.11 
12.79 

65.44 
18.91 

60.10 
28.49 

5.3 Comparisons of Detection Rates 
Fig. 6 shows DR contrasts of the DT-IDM model and the SNS model under the selective 
forwarding attack and the sybil attack. The short vertical lines are standard variations. As can 
be seen from the figure, the DT-IDM model has better detection performance. When the 
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number of attacker nodes is small, the DT-IDM model and the SNS model can accurately 
detect the invasion. While the number of attacker nodes increases, two models’ DRs decline. 
But in the DT-IDM model, multiple nodes within the scope of the danger zone work together 
to present antigens, and can accurately capture the invasion flow. So, it has better detection 
rate in the massive invasion. 
 

 
Fig. 6. Comparisons of detection rates of DT-IDM and SNS 

 

5.4 Comparisons of False Alarm Rates 
Fig. 7 shows FAR contrasts of the DT-IDM model and the SNS model under the sinkhole 
attack and the resource depletion attack. The short vertical lines are standard variations. As can 
be seen from the figure, the DT-IDM model has better detection performance. When the 
number of attacker nodes is small, FARs of the DT-IDM model and the SNS model are low. 
While the number of attacker nodes increases, two models’ FARs increase. In the intrusion 
detection process, sensor nodes of the DT-IDM model send danger signals, and then sink node 
gathers comprehensive global information to make decisions and calculate the danger zone, 
and finally antigen presenting is implemented. Before the antigen presenting, the sink node 
performs the global investigation. So, the false alarm rate of the DT-IDM model is lower. 

 
Fig. 7. Comparisons of false alarm rates of DT-IDM and SNS 
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5.5 Comparisons of Energy Consumptions 
In the SNS model, sensor nodes need to monitor network traffic constantly, so they are set in 
promiscuous mode and the energy is consumed all the time. In the DT-IDM model, danger 
perceiving module and antigen presenting module do not take up the special data transmission, 
only run in the normal working time. Research shows that the energy consumption of 
implementing commands for the sensor is far less than the energy consumption of transmitting 
data [1-5]. So, we mainly consider the energy consumptions of sending and receiving data, 
which can be calculated by the following equation.  
 

Energy Comsumputation = Nbyte*V*(Nsend*Isend+Nrecv*Irecv)/Rate                   (20) 
 

Nbyte is the number of bits of each packet, V is the voltage of sensors, Isend is the sending 
current, Irecv is the receiving current, Rate is the network transmission rate, and Nsend and Nrecv 
are the numbers of packets which the node sends and recives. 

Fig. 8 describes the energy consumption contrasts with or without a detection system in the 
wireless sensor networks. The first column shows the value of the energy consumption 
without invasion and without the detection system, the second shows the value under the 
intrusion detection system and without invasion, the third shows the value under the invasion 
and without the intrusion detection system, and the fourth shows the value under the invasion 
and the intrusion detection system. The invasion of the network is the resource depletion 
attack on a node. As can be seen from the figure, a 147% increase is shown when IDS is 
applied in the network which is from a low base and nearly does not affect the system, whereas 
when an attack is initiated the whole network increases with 2195% energy consumption. 
Finally, applying the proposed IDS saves an energy consumption of more than 1902%. When 
the network is deployed the DT-IDM model, the system energy consumption increases 
slightly with no invasion, and the consumption is greatly reduced under invasion. 

 

 
Fig. 8. The energy consumption contracts 

 
Fig. 9 describes the energy consumption contrasts of the DT-IDM model and the SNS 

model under the resource depletion attack. The short vertical lines are standard variations. As 
can be seen from the figure, while the number of attacker nodes increases, the energy 
consumptions of two models increase. When an attack is initiated, a 78% decrease is shown 
when DT-IDM is applied in the network compared with SNS. When 9 nodes are attacked, 
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energy consumption of DT-IDM is decreased by 32% compared with SNS. And this value is 
22% when 20 nodes are attacked. So, the DT-IDM model has obvious advantages. 

 

 
Fig. 9. The energy consumption contracts of DT-IDM and SNS 

6. Conclusions and Future Works 
To ensure the safety of WSNs is one of the bases that wireless sensor networks can be widely 
applied. This paper first analyzes the typical attacks, intrusion detection characteristics and the 
security research status of wireless sensor networks. Existing research on intrusion detection 
technology in WSNs is not very mature, and most detection systems are transplanted from 
traditional networks. Then, the paper proposes a distributed intrusion detection model based 
on danger theory for wireless sensor networks. The model simulate immune processes to 
eliminate external invasions. When the network perceives abnormity, the model produces 
danger signals. Danger signals build a danger area around them, where immune cells will be 
activated to participate in immune responses. At last, the performance of the model is analyzed 
and experimental results show that the model has good detection performance and reduces 
energy consumption. 

The intrusion detection technology in wireless sensor networks is an important research 
subject, and there are many practical problems. In this paper, the next step is to apply the 
model to the real wireless sensor networks and to perform further validation and improvement, 
in order to make the model more meaningful. 
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