• Title/Summary/Keyword: Generalized G-metric space

Search Result 28, Processing Time 0.028 seconds

ON LACUNARY ∆m-STATISTICAL CONVERGENCE IN G-METRIC SPACES

  • Asif Hussain Jan;Tanweer Jalal
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.109-120
    • /
    • 2024
  • The aim of this research is to describe lacunary ∆m-statistically convergent sequences with respect to metrics on generalised metric spaces (g-metric spaces) and to look into the fundamental characteristics of this statistical form of convergence. Also, the relationship between strong summability and lacunary ∆m-statistical convergence in g-metric space is established at the end.

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS

  • Deshpande, Bhavana;Handa, Amrish;Thoker, Shamim Ahmad
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.333-354
    • /
    • 2016
  • We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X^2{\rightarrow}X$ by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.

COINCIDENCE THEOREMS FOR COMPARABLE GENERALIZED NON LINEAR CONTRACTIONS IN ORDERED PARTIAL METRIC SPACES

  • Dimri, Ramesh Chandra;Prasad, Gopi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.375-387
    • /
    • 2017
  • In this paper, we prove some coincidence point theorems involving ${\varphi}-contraction$ in ordered partial metric spaces. We also extend newly introduced notion of g-comparability of a pair of maps for linear contraction in ordered metric spaces to non-linear contraction in ordered partial metric spaces. Thus, our results extend, modify and generalize some recent well known coincidence point theorems of ordered metric spaces.

A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.485-500
    • /
    • 2014
  • In this paper, we establish coupled fixed point theorems for mixed monotone mappings satisfying nonlinear contraction involving a pair of altering distance functions in ordered G-metric spaces. Via presented theorems we extend and generalize the results of Harjani et al. [J. Harjani, B. L$\acute{o}$pez and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

BEST APPROXIMATIONS FOR MULTIMAPS ON ABSTRACT CONVEX SPACES

  • Park, Sehie
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • In this article we derive some best approximation theorems for multimaps in abstract convex metric spaces. We are based on generalized KKM maps due to Kassay-Kolumbán, Chang-Zhang, and studied by Park, Kim-Park, Park-Lee, and Lee. Our main results are extensions of a recent work of Mitrović-Hussain-Sen-Radenović on G-convex metric spaces to partial KKM metric spaces. We also recall known works related to single-valued maps, and introduce new partial KKM metric spaces which can be applied our new results.

COUPLED COINCIDENCE POINT RESULTS FOR GENERALIZED SYMMETRIC MEIR-KEELER CONTRACTION ON PARTIALLY ORDERED METRIC SPACES WITH APPLICATION

  • Deshpande, Bhavana;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.79-98
    • /
    • 2017
  • We establish a coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X{\times}X{\rightarrow}X$ under generalized symmetric Meir-Keeler contraction on a partially ordered metric space. We also deduce certain coupled fixed point results without mixed monotone property of $F:X{\times}X{\rightarrow}X$. An example supporting to our result has also been cited. As an application the solution of integral equations are obtain here to illustrate the usability of the obtained results. We improve, extend and generalize several known results.

APPLICATION OF GENERALIZED WEAK CONTRACTION IN INTEGRAL EQUATION

  • Amrish Handa
    • The Pure and Applied Mathematics
    • /
    • v.30 no.3
    • /
    • pp.249-267
    • /
    • 2023
  • This manuscript is divided into three segments. In the first segment, we prove a unique common fixed point theorem satisfying generalized weak contraction on partially ordered metric spaces and also give an example to support our results presented here. In the second segment of the article, some common coupled fixed point results are derived from our main results. In the last segment, we investigate the solution of integral equation as an application. Our results generalize, extend and improve several well-known results of the existing literature.

COMMON FIXED POINT THEOREMS UNDER GENERALIZED (ψ - ϕ)-WEAK CONTRACTIONS IN S-METRIC SPACES WITH APPLICATIONS

  • Saluja, G.S.;Kim, J.K.;Lim, W.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.13-33
    • /
    • 2021
  • The aim of this paper is to establish common fixed point theorems under generalized (ψ - ϕ)-weak contractions in the setting of complete S-metric spaces and we support our result by some examples. Also an application of our results, we obtain some fixed point theorems of integral type. Our results extend Theorem 2.1 and 2.2 of Doric [5], Theorem 2.1 of Dutta and Choudhury [6], and many other several results from the existing literature.

COMMON FIXED POINT THEOREMS OF MEIR-KEELER TYPE ON MULTIPLICATIVE METRIC SPACES

  • DESHPANDE, BHAVANA;SHEIKH, SAJAD AHMAD
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2016
  • In this paper, we present some common fixed point theorems for two pairs of weakly compatible self-mappings on multiplicative metric spaces satisfying a generalized Meir-Keeler type contractive condition. The results obtained in this paper extend, improve and generalize some well known comparable results in literature.

Extended by Balk Metrics

  • DOVGOSHEY, OLEKSIY;DORDOVSKYI, DMYTRO
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.449-472
    • /
    • 2015
  • Let X be a nonempty set and $\mathcal{F}$(X) be the set of nonempty finite subsets of X. The paper deals with the extended metrics ${\tau}:\mathcal{F}(X){\rightarrow}\mathbb{R}$ recently introduced by Peter Balk. Balk's metrics and their restriction to the family of sets A with ${\mid}A{\mid}{\leqslant}n$ make possible to consider "distance functions" with n variables and related them quantities. In particular, we study such type generalized diameters $diam_{{\tau}^n}$ and find conditions under which $B{\mapsto}diam_{{\tau}^n}B$ is a Balk's metric. We prove the necessary and sufficient conditions under which the restriction ${\tau}$ to the set of $A{\in}\mathcal{F}(X)$ with ${\mid}A{\mid}{\leqslant}3$ is a symmetric G-metric. An infinitesimal analog for extended by Balk metrics is constructed.