• 제목/요약/키워드: Geant4 code

Search Result 39, Processing Time 0.015 seconds

Verification of Dose Evaluation of Human Phantom using Geant4 Code (Geant4 코드를 사용한 인체팬텀 선량평가 검증)

  • Jang, Eun-Sung;Choi, Ji-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.529-535
    • /
    • 2020
  • Geant4 is compatible with the Windows operating system in C++ language use, enabling interface functions that link DICOM or software. It was simulated to address the basic structure of the simulation using Geant4/Gate code and to specifically verify the density composition and lung cancer process in the human phantom. It was visualized using the Gate Graphic System, i.e. openGL, Ray Tracer: Ray Tracing by Geant4 Tracing, and using Geant4/Gate code, lung cancer is modeled in the human phantom area in 3D, 4D to verify the simulation progress. Therefore, as a large number of new functions are added to the Gate Code, it is easy to implement accurate human structure and moving organs.

Geant 4 Monte Carlo simulation for I-125 brachytherapy

  • Jie Liu;M.E. Medhat;A.M.M. Elsayed
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2516-2523
    • /
    • 2024
  • This study aims to validate the dosimetric characteristics of Low Dose Rate (LDR) I-125 source Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report (TG-43), the dosimetric parameters of a new brachytherapy source should be verified either experimentally or theoretically before clinical procedures. The simulation studies are very important since this procedure delivers a high dose of radiation to the tumor with only a minimal dose affecting the surrounding tissues. GEANT4 Monte Carlo simulation toolkit associated brachytherapy example was modified, adapted and several updated techniques have been developed to facilitate and smooth radiotherapy techniques. The great concordance of the current study results with the consensus data and with the results of other MC based studies is promising. It implies that Geant4-based Monte Carlo simulation has the potential to be used as a reliable and standard simulation code in the field of brachytherapy for verification and treatment planning purposes.

Calculation of Dose Distribution for SBRT Patient Using Geant4 Simulation Code (Geant4 전산모사 코드를 이용한 SBRT 환자의 선량분포 계산)

  • Kang, Jeongku;Lee, Jeongok;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • The Monte Carlo based dose calculation program for stereotactic body radiotherapy was developed in this study. The Geant4 toolkit widely used in the radiotherapy was used for this study. The photon energy spectrum of the medical linac studied in the previous research was applied for the patient dose calculations. The geometry of the radiation fields defined by multi-leaf collimators were taken into account in the PrimaryGeneratorAction class of the Geant4 code. The total of 8 fields were demonstrated in the patient dose calculations, where rotation matrix as a function of gantry angle was used for the determination of the source positions. The DicomHandler class converted the binary file format of the DICOM data containing the matrix number, pixel size, endian type, HU number, bit size, padding value and high bits order to the ASCII file format. The patient phantom was constructed using the converted ASCII file. The EGSnrc code was used to compare the calculation efficiency of the material data.

Comparison Study on Low Energy Physics Model of GEANT4 (GEANT4 저 에너지 전자기 물리 모델에 대한 비교 연구)

  • Park, So-Hyun;Jung, Won-Gyun;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.124-134
    • /
    • 2010
  • The Geant4 simulation toolkit provides improved or renewed physics model according to the version. The latest Geant4.9.3 which has been recoded by developers applies inserted Livermore data and renewed physics model to the low energy electromagnetic physics model. And also, Geant4.9.3 improved the physics factors by modified code. In this study, the stopping power and CSDA(Continuously Slowing Down Approximation) range data of electron or particles were acquired in various material and then, these data were compared with NIST(National Institute of Standards and Technology) data. Through comparison between data of Geant4 simulation and NIST, the improvement of physics model on low energy electromagnetic of Geant4.9.3 was evaluated by comparing the Geant4.9.2.

Verification of the PMCEPT Monte Carlo dose Calculation Code for Simulations in Medical Physics (의학물리 분야에 사용하기 위한 PMCEPT 몬테카를로 도즈계산용 코드 검증)

  • Kum, O-Yeon
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • The parallel Monte Carlo electron and photon transport (PMCEPT) code [Kum and Lee, J. Korean Phys. Soc. 47, 716 (2006)] for calculating electron and photon beam doses has been developed based on the three dimensional geometry defined by computed tomography (CT) images and implemented on the Beowulf PC cluster. Understanding the limitations of Monte Carlo codes is useful in order to avoid systematic errors in simulations and to suggest further improvement of the codes. We evaluated the PMCEPT code by comparing its normalized depth doses for electron and photon beams with those of MCNP5, EGS4, DPM, and GEANT4 codes, and with measurements. The PMCEPT results agreed well with others in homogeneous and heterogeneous media within an error of $1{\sim}3%$ of the dose maximum. The computing time benchmark has also been performed for two cases, showing that the PMCEPT code was approximately twenty times faster than the MCNP5 for 20-MeV electron beams irradiated on the water phantom. For the 18-MV photon beams irradiated on the water phantom, the PMCEPT was three times faster than the GEANT4. Thus, the results suggest that the PMCEPT code is indeed appropriate for both fast and accurate simulations.

  • PDF

Comparison of Practical Usefulness of Respirational Radiation Treatment Using Geant 4 Simulation Code (Geant 4 시뮬레이션 코드를 이용한 호흡 동조 방사선치료의 유용성 비교)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.637-643
    • /
    • 2019
  • To verify internal movements of the body, a DICOM file obtained from CT and a Geant4 code were used to simulate lung cancer patients. In addition, the method is applied to measure the movement of tumor when the movement of t he tumor is located inhale and exhale by creating a virtual tumor in the self-produced moving phantom, and to check the distribution of dose in the treatment plan and the accuracy of tumor in PTV for respiratory and lung cancer patients. It was confirmed that 97% or more respiratory control radiation therapy was effective even if the moving area was more than 3cm, in the 40% to 70% range. Dose distribution with respiratory radiation therapy applied to moving targets, measured by film in the actuation phantom, was shown to be within a 3mm margin of error for dose distribution containing 90%. It was confirmed that for actual patient breathing curves, the treatment time may be shorter than that due to the longer expiratory time.

A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography (유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구)

  • Lee, Sang-Ho;Lee, Jong-Seok;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution (Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구)

  • Lee, Jun-Seong;Kim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.

Monte Carlo Simulation for absorbed dose in PMMA phantom during the low-energy X-ray irradiation (저 에너지 X선 조사 시 PMMA 팬텀 내의 흡수선량 평가를 위한 몬테카를로 시뮬레이션)

  • Kim, Sang-Tae;Kang, Sang-Koo;Kim, Chong-Yeal
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • This study offered a new method to calculate absorbed dose of actual patients through Monte Carlo Simulation by using the linkage of Geant4 and DICOM, and, the experimental value of absorbed dose at the center and Geant 4 simulation result according to the depth of PMMA mock phantom were compared by using MOSEF in order to verify Geant4 calculation code. In the area where there was no air space between the irregular gap due to incomplete compression of PMMA slab, the differences were $0.46{\pm}4.69$ percent and $-0.75{\pm}5.19$percent in $15{\times}15cm^2$ and $20{\times}20cm^2$ respectively. Excluding the error due to incomplete compression of PMMA mock phantom, the calculation values of the Monte Carlo simulation by linkage of Geant4 and DICOM was the same.

A feasibility study of the Iranian Sun mather type plasma focus source for neutron capture therapy using MCNP X2.6, Geant4 and FLUKA codes

  • Nanbedeh, M.;Sadat-Kiai, S.M.;Aghamohamadi, A.;Hassanzadeh, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1002-1007
    • /
    • 2020
  • The purpose of the current study was to evaluate a spectrum formulation set employed to modify the neutron spectrum of D-D fusion neutrons in a IS plasma focus device using GEANT4, MCNPX2.6, and FLUKA codes. The set consists of a moderator, reflector, collimator and filters of fast neutron and gamma radiation, which placed on the path of 2.45 MeV neutron energy. The treated neutrons eliminate cancerous tissue with minimal damage to other healthy tissue in a method called neutron therapy. The system optimized for a total neutron yield of 109 (n/s). The numerical results indicate that the GEANT4 code for the cubic geometry in the Beam Shaping Assembly 3 (BSA3) is the best choice for the energy of epithermal neutrons.