DOI QR코드

DOI QR Code

Monte Carlo Simulation for absorbed dose in PMMA phantom during the low-energy X-ray irradiation

저 에너지 X선 조사 시 PMMA 팬텀 내의 흡수선량 평가를 위한 몬테카를로 시뮬레이션

  • Kim, Sang-Tae (Department of Radiological Science, Hanlyo University) ;
  • Kang, Sang-Koo (Department of Radiation Science & Technology, Chonbuk National University) ;
  • Kim, Chong-Yeal (Department of Radiation Science & Technology, Chonbuk National University)
  • 김상태 (한려대학교 방사선학과) ;
  • 강상구 (전북대학교 방사선과학기술학과) ;
  • 김종일 (전북대학교 방사선과학기술학과)
  • Received : 2011.11.14
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

This study offered a new method to calculate absorbed dose of actual patients through Monte Carlo Simulation by using the linkage of Geant4 and DICOM, and, the experimental value of absorbed dose at the center and Geant 4 simulation result according to the depth of PMMA mock phantom were compared by using MOSEF in order to verify Geant4 calculation code. In the area where there was no air space between the irregular gap due to incomplete compression of PMMA slab, the differences were $0.46{\pm}4.69$ percent and $-0.75{\pm}5.19$percent in $15{\times}15cm^2$ and $20{\times}20cm^2$ respectively. Excluding the error due to incomplete compression of PMMA mock phantom, the calculation values of the Monte Carlo simulation by linkage of Geant4 and DICOM was the same.

Geant4와 DICOM 파일의 연동을 이용한 몬테카를로 시뮬레이션을 통해 실제 환자의 흡수선량을 산출하는 새로운 방법을 제시하고, Geant4 계산코드의 검증을 위해 MOSFET 선량계를 이용하여 PMMA 모의 팬텀 깊이에 따른 중심에서의 흡수선량 실측값과 Geant4 시뮬레이션 결과값을 비교하였다. PMMA slab의 불완전한 압착으로 인해 발생한 불균등한 간격의 공기층이 존재하지 않은 부분에서는 X선 조사야 $15{\times}15cm^2$$20{\times}20cm^2$에서 각각 $0.46{\pm}4.69%$$-0.75{\pm}5.19%$로 나타났다. PMMA 모의 팬텀의 불완전한 압착에 의해 나타난 오차를 제외하면 Geant4와 DICOM 파일의 연동을 통한 몬테카를로 시뮬레이션에 의한 계산값이 잘 일치함을 알 수 있다.

Keywords

References

  1. Pia MG, "The Geant4 Toolkit: simulation capabilities and application results," Nuclear Physics B(Proc. Suppl), Vol. 125, pp.60-68, 2003. https://doi.org/10.1016/S0920-5632(03)90967-4
  2. 한국표준협회, "광자에너지에 따른 응답결정과 선량계 및 선량율계 교정용 엑스, 감마 기준방사선-제1부 : 방사선특성과 발생방법," KS A ISO 4037-1, 2003.
  3. Philips Healthcare Global Information Center Document, http://incenter.medical.philips.com/doclib/enc/fetch/2000/4504/577242/577261/577263/670329/670330/5162255/EasyDiagnost_Eleva_with_digital_Radiography_Fluoroscopy_room_solutions_to_combine_both_applications_in_one_room_-_DRF_applications.pdf%3fnodeid%3d5162718%26vernum%3d2, 2009.
  4. IPEM, "Catalogue of Diagnostic X-Ray Spectra and other Data," 1997.
  5. Amako K, Guatelli S, Urban L, et al., "Comparison of Geant4 Electromagntic Physics Models Against the NIST Reference Data," IEEE, Vol. 42, No. 4, pp.910-918, 2005.
  6. Poon E, Verhaegen F "Accuracy of the photon and electron physics in Geant4 for radiotherapy applications," Med. Phys., Vol. 32, No. 6, pp.1696-1711, 2005. https://doi.org/10.1118/1.1895796
  7. Jarry G, DeMarco JJ, Beifuss U, Cagnon CH and McNitt-Gray MF "A Monte Carlo-based method to estimate radiation dose from spiralCT : from phantom testing to patient-specific models," Phys Med Biol., Vol. 48, pp.2645-2663, 2003. https://doi.org/10.1088/0031-9155/48/16/306
  8. Greig JR, Miller RW, Okunieff P, "An approach to dose measurement for total body irradiation," Int J Radiat Oncol Biol Phys., Vol. 36, pp.463-468, 1996. https://doi.org/10.1016/S0360-3016(96)00268-4
  9. Lee PC, Sawicka JM, Glasgow GP, "Patient dosimetry quality assurance program with a commercial diode system," Int J Radiat Oncol Biol Phys., Vol. 29, pp.1175-1182, 1994. https://doi.org/10.1016/0360-3016(94)90415-4
  10. Podgorsak EB, Pla C, Evans M, Pla M, "The influence of phantom size on output factor, peak scatter factor, and percentage depth dose in large-field photon irradiation," Med Phys., Vol. 12, pp.639-645, 1985. https://doi.org/10.1118/1.595686
  11. Aso T, Kiura A, Yamashita T, Sasaki T "Optimization of Patient Geometry Based on CT data in Geant4 for Medical Applization," Nuclear Science Symposium Conference Record, pp.2576-2580, 2007.

Cited by

  1. The Evaluation of the Thick Polycrystalline HgO and PbO Films Derived by Particle Sedimentation Method for the Mammographic Application vol.8, pp.7, 2014, https://doi.org/10.7742/jksr.2014.8.7.429
  2. Investigation on backscatter According to Changed in Components of Linear Accelerator Using Monte Carlo Simulation vol.9, pp.4, 2015, https://doi.org/10.7742/jksr.2015.9.4.239