A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography

유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구

  • Received : 2012.10.31
  • Accepted : 2012.12.13
  • Published : 2012.12.31

Abstract

As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

우리나라 여성들의 유방암 발생률이 빠르게 증가하면서 최근 유방검사에 대한 관심과 함께 촬영건수가 급격하게 증가하고 있다. 유방촬영술은 유방암을 조기에 진단할 수 있는 유일한 방법이지만 방사선 피폭에 의한 위해를 간과 할 수 없다. 따라서 유방촬영시 유방 조직 내 흡수되는 방사선량을 계산하는 것은 방사선 피폭에 대한 방호대책을 위해 중요할 수 밖에 없다. 인체 내에 흡수되는 방사선량은 직접 측정이 불가능하기 때문에 통계적인 계산방법이 사용되는데, 기존의 통계적 계산방법들은 인체모형팬텀을 사용하여 인체내부 구조를 묘사함으로써 방사선과 물질과의 상호작용을 전산모사 하도록 하였다. 그러나 최근 인체내 흡수선량 계산에 가장 정확한 것으로 알려진 몬테카를로 방법에서 Geant4 code을 이용한 전산모사는 CT의 DICOM 파일을 이용하여 실제 인체의 해부학적 구조를 그대로 재현함으로써 정확한 선량계산을 할 수 있도록 하고 있다. 따라서, 본 연구에서는 유방조직 내 흡수선량을 계산하기 위해 Geant4 code를 이용한 전산모사를 실행하였고, Geant4가 제공하고 있는 DICOM 변환 파일을 이용함으로써 CT image data에서 표현된 인체구조를 시뮬레이션에 필요한 geometry로 변환하여 사용하였다. 또한 시뮬레이션에 의한 계산선량값(calculated dose)과 선량계(PTW ion chamber)를 이용한 측정선량 값(measured dose)을 비교함으로써 DICOM 파일을 연동한 Geant4의 선량계산이 유용한지를 검증하고자 하였다. 그 결과 28 kVp, 190 mAs의 조건에서 선량계를 이용한 측정선량 값과 시뮬레이션에 의해 계산된 선량 값의 오차백분율은 0.08 %에서 0.33 %인 것으로 조사되었고, 28 kVp, 70 mAs에서 선량 값의 오차백분율은 0.01 %에서 0.16 %의 결과를 보여 허용오차범위인 2 %이내의 결과를 나타내었다. 따라서 Geant4 시뮬레이션을 통한 흡수선량 계산은 유방촬영에서 유방 조직 내 흡수선량을 측정함에 유용한 것으로 조사되었다.

Keywords

References

  1. 보건복지 가족부, 유방엑스선 검사에서의 환자선량 권고량. 방사선안전관리 시리즈, 2008.
  2. 박소현,정원균, 서태석: GEANT4 저 에너지 전자기 물리 모델에 대한 비교연구. 방사선 방어학회, 35, 3, 2010
  3. 조영걸 ,김형동, 김병용, 김성진, 오세안, 강정구, 김성규: GEANT4를 이용한 선형가속기 기초코드 작성과 전자선에너지 분포계산. 의학물리,22-2, 2011
  4. Chetty lJ Curran B,Cygler JE et al: AAPM Report TG-105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Report of the AAPM Task Group No. 105 Med Phys 26, 1847-1870, 1999
  5. Almond PR.Biggs PJ. Coursey BM, et al: AAPM Report TG-51:Protocol for clinical reference dosimetry of high-energy photon and electron beams. Report of AAPM Task Group No.51. Med Phys 26, 1847-1870, 1990
  6. Faddegon B.Egley B.Steinberg T : Comparion of beam characteristics of a goid x-ray target and a tungsten replacement target. Med Phys 31, 91-97, 2004 https://doi.org/10.1118/1.1634491
  7. Faddegon BA, O'Brien PF. Mason DLD: The flattened area of Siemens linear accelerator x-ray fields. Med Phys, 26, 220-228, 1999 https://doi.org/10.1118/1.598508
  8. Faddegon BA, Perl J,Asai M : Monte Carlo simulation of large electron fields. Phys Med Biol, 53, 1497-1510, 2008 https://doi.org/10.1088/0031-9155/53/5/021
  9. Hogstrom KR. Boyd RA. Antolak JA, et al : Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy. Med Phys 35, 5777-5786, 2004
  10. Sang Koo Kang, Sung Hwan Ahn, Chong Yeal Kim, A Study on Photon Dose Calculation in 6 MV Linear Accelerator Based on Monte Carlo Method. Korean society of Radiogical science, 34-1, 2011
  11. Agostinelli S, Allison J,Amako K,Apostolakis, Araujo H,Arce P, Geant4-a simulation toolkit. Nucl. Instrum. Meth. February; 506, 205-303. 2003 https://doi.org/10.1016/S0168-9002(03)01395-0
  12. Guatelli S, Mascialino B, Pia MG, Piergentili M,Precision vaildation of Geant4 electromagnetic physics American Nuclear Society Topical Meeting in Monte Carlo April:17-21, 2005
  13. Kim AmiO, Kim Seungwan, Song Juwhan, Gwun Oubong, Kim Chongyeal, Hong Seungwoo, Radiation dose plan system based on particle simulation and volume rendering. korean computer graphics society, 12-3, 2006
  14. ICRU Report 46: Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. International Commission on Radiological Units and Measurements, Washington, DC, 1992
  15. GEANT4 collaboration, Physics Reference Manual for GEANT4 CERN, 2008
  16. Poon E, Verhaegen F: Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications. Med Phys, 32, 1696-1711, 2005 https://doi.org/10.1118/1.1895796
  17. Cranley K,Gilmore BJ Fogarty GWA, Desponds L: IPEM Report 78, Catalogue of Diagnostic X-ray Spectra and Other Data(CD-Rom Edition 1997) (Eletronic Version prepared by D sutton). The Institute of Physics and Engineering in Medicine, 1997
  18. Cranley K,Gilmore BJ Fogaty GWA: Catalogue of Diagnostic X-ray Spectra and Other data, Diagnostic Radiology and Magnetic Resonance Special Interest Group of ther Institute of Physics and Engineering in Medicine, 4-43, 1997