Comparison Study on Low Energy Physics Model of GEANT4

GEANT4 저 에너지 전자기 물리 모델에 대한 비교 연구

  • Park, So-Hyun (Department of Biomedical Engineering, the Catholic University of Korea) ;
  • Jung, Won-Gyun (Department of Biomedical Engineering, the Catholic University of Korea) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, the Catholic University of Korea)
  • Received : 2010.05.18
  • Accepted : 2010.06.22
  • Published : 2010.09.30

Abstract

The Geant4 simulation toolkit provides improved or renewed physics model according to the version. The latest Geant4.9.3 which has been recoded by developers applies inserted Livermore data and renewed physics model to the low energy electromagnetic physics model. And also, Geant4.9.3 improved the physics factors by modified code. In this study, the stopping power and CSDA(Continuously Slowing Down Approximation) range data of electron or particles were acquired in various material and then, these data were compared with NIST(National Institute of Standards and Technology) data. Through comparison between data of Geant4 simulation and NIST, the improvement of physics model on low energy electromagnetic of Geant4.9.3 was evaluated by comparing the Geant4.9.2.

Geant4 전산모사 toolkit은 버전에 따라 개선되거나 새로워진 물리적 모델을 제공한다. 최근 재 코드화 된 Geant4.9.3은 저 에너지 전자기 물리 모델에 대해 Livermore 데이터 삽입과 새로운 물리적 모델을 적용시키고, 코드를 수정하여 물리적 요소를 개선시켰다. 본 연구에서는 향후, 전자 또는 입자를 이용한 신뢰성 있는 전산모사를 위하여 Geant4.9.2와 9.3에 포함된 전자기 물리모델을 이용하여 물질 내부를 통과하는 입자의 저지능(Stopping power)과 CSDA(Continuously Slowing Down Approximation) range 데이터를 획득하였으며, 이 결과를 미국국립기술표준원(National Institute of Standards and Technology, NIST)에서 제공하는 각각의 데이터와 비교하여, Geant4.9.2에 대한 Geant4.9.3의 저 에너지 전자기 물리 모델의 개선 여부를 알아보고자 하였다.

Keywords

References

  1. http://www.geant4.org/geant4/ Andreo P. Monte Carlo techniques in medical radiation physics. Phys. Med. Biol. 1991;36(7):861‐920. https://doi.org/10.1088/0031-9155/36/7/001
  2. Agostinelli S, Allison J, Amako K, Apostolakis, Araujo H, Arce P. Geant4‐a simulation toolkit. Nucl. Instrum. Meth. 2003 February; 506:250‐303. https://doi.org/10.1016/S0168-9002(03)01368-8
  3. Guatelli S, Mascialino B, Pia MG, Piergentili M. Precision validation of Geant4 electromagnetic physics. American Nuclear Society Topical Meeting in Monte Carlo 2005 April:17‐21.
  4. Emily P, Frank V. Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications. Med. Phys. 2005 May;32(6):1696‐1711. https://doi.org/10.1118/1.1895796
  5. Chen Y, Ahmad S. Evaluation of inelastic hadronic processes for 250 MeV proton interactions in tissue and iron using Geant4. Radiation Protection dosimetry 2009 July; 136(1):11‐16. https://doi.org/10.1093/rpd/ncp149
  6. http://physics.nist.gov Katsuya A, Susanna G, Vladimir N. I, Michel M, Barbara M, Koichi M. Comparison of Geant4 electromagnetic physics models against the nist reference data. IEEE 2005 May.
  7. Chen J, Kellerer AM, Rossi HH. Radially restricted linear energy transfer for high‐energy proton: a new analytical approach. Radiat. Environ. Biophys. 1994;33:181‐187. https://doi.org/10.1007/BF01212674
  8. Apostolakis J, Grichine VM, Ivanchenko VN. The recent upgrades in the standard electromagnetic physics package. Proceedings of the CHEP'06 Conference 2006.
  9. Chen J, Kellerer AM, Rossi HH. Radially restricted linear energy transfer for high-energy proton: a new analytical approach. Radiat. Environ. Biophys. 1994;33:181-187. https://doi.org/10.1007/BF01212674
  10. Apostolakis J, Grichine VM, Ivanchenko VN. The recent upgrades in the standard electromagnetic physics package. Proceedings of the CHEP'06 Conference 2006.