DOI QR코드

DOI QR Code

Geant 4 Monte Carlo simulation for I-125 brachytherapy

  • Jie Liu (Applied Physics Dept, Sichuan University of Science and Engineering) ;
  • M.E. Medhat (Experimental Nuclear Physics Department, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (EAEA)) ;
  • A.M.M. Elsayed (Applied Physics Dept, Sichuan University of Science and Engineering)
  • Received : 2023.07.25
  • Accepted : 2024.02.05
  • Published : 2024.07.25

Abstract

This study aims to validate the dosimetric characteristics of Low Dose Rate (LDR) I-125 source Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report (TG-43), the dosimetric parameters of a new brachytherapy source should be verified either experimentally or theoretically before clinical procedures. The simulation studies are very important since this procedure delivers a high dose of radiation to the tumor with only a minimal dose affecting the surrounding tissues. GEANT4 Monte Carlo simulation toolkit associated brachytherapy example was modified, adapted and several updated techniques have been developed to facilitate and smooth radiotherapy techniques. The great concordance of the current study results with the consensus data and with the results of other MC based studies is promising. It implies that Geant4-based Monte Carlo simulation has the potential to be used as a reliable and standard simulation code in the field of brachytherapy for verification and treatment planning purposes.

Keywords

Acknowledgement

This work was supported by the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering.

References

  1. Global Cancer Observatory, Cancer Today, International Agency for Research on Cancer, Lyon, 2023. Available at: https://gco.iarc.fr/today.
  2. S.A. Budrukkar, A. Rembielak, T. Kron, J.P. Agarwal, Challenges in the sustainability of brachytherapy service in contemporary radiotherapy, Clin. Oncol. 35 (2023), https://doi.org/10.1016/j.clon.2023.05.013.
  3. Y.H. Zhang, S. Martin, H. Liu, D. Todor, J.J. Sohn, B. Quinn, L.E. Francis, M. Roach, E.C. Fields, Utilizing a novel hybrid brachytherapy technique FINITO (Freehand Interstitial Needles in addition to Tandem and Ovoid) for locally advanced cervical cancer, Brachytherapy 22 (6) (2023), https://doi.org/10.1016/j.brachy.2023.06.005.
  4. M. Meftahi, R.L.J. Qiu, P. Patel, W.Y. Song, X.F. Yang, A novel direction modulated brachytherapy technique for urethra sparing in high-dose-rate brachytherapy of prostate cancer, Radiother. Oncol. 186 (2023), https://doi.org/10.1016/j.radonc.2023.109801.
  5. D. Colson-Fearon, K. Han, M.B. Roumeliotis, A.N. Viswanathan, Updated trends in brachytherapy utilization and disparities in the United States from 2004 to 2020, Int. J. Radiat. Oncol. Biol. Phys. (2023), https://doi.org/10.1016/j.ijrobp.2023.11.036.
  6. A.N. Azahari, A.T. Ghani, R. Abdullah, J. Jayamani, G.K. Appalanaido, J. Jalil, M. Z. Abdul Aziz, Variation of optimization techniques for high dose rate brachytherapy in cervical cancer treatment, Nucl. Eng. Technol. 54 (2022) 2022, https://doi.org/10.1016/j.net.2021.10.004.
  7. H. Schiefer, S. Heinze, M. Glatzer, A precise and simple isodose-volume-based verification method for HDR and LDR brachytherapy plans, Brachytherapy 22 (3) (2023), https://doi.org/10.1016/j.brachy.2022.12.007.
  8. C. Chen, Y. Huang, Q. Fang, S. Wang, Preparation of C, Sn modified ZnMn2O4 porous microsphere and its electrochemical performance, J. Alloys Compd. 889 (2021), https://doi.org/10.1016/j.jallcom.2021.161654.
  9. F. Pang, S. Hou, P. Wang, M. Liu, Y. Luo, L. Zhao, β-MnO2/metal-organic framework derived nanoporous ZnMn2O4 nanorods as lithium-ion battery anodes with superior lithium-storage performance, Chem. Eur J. 25 (2019), https://doi.org/10.1002/chem.201806006.
  10. J. Lin, C. Zeng, J. Xu, A. Zeb, X. Lin, L. Hu, K. Li, X. Xu, Oxygen vacancy engineering of carbon-encapsulated (Co,Mn)(Co,Mn)2O4 from metal-organic framework towards boosted lithium storage, Chem. Eng. J. 425 (2021), https://doi.org/10.1016/j.cej.2021.130661.
  11. Y. Chen, Y. Xu, Z. Li, W. Zhang, M. Zheng, H. Zhang, Biomass-mediated synthesis of carbon-supported ZnMn2O4 nanoparticles as high-performance anode materials for lithium-ion batteries, Colloids Surf. A Physicochem. Eng. Asp. 600 (2020), https://doi.org/10.1016/j.colsurfa.2020.124941.
  12. M. Santiba'nez, ˜ M. Fuentealba, Experimental determination of Gd dose enhancement and Gd dose sparing by 192Ir brachytherapy source with Gafchromic EBT3 dosimeter, Appl. Radiat. Isot. 175 (2021). https://10.1016/j.apradiso.2021.109787.
  13. J. Lin, C. Zeng, J. Xu, A. Zeb, X. Lin, L. Hu, K. Li, X. Xu, Oxygen vacancy engineering of carbon-encapsulated (Co,Mn)(Co,Mn)2O4 from metal-organic framework towards boosted lithium storage, Chem. Eng. J. 425 (2021), https://doi.org/10.1016/j.cej.2021.130661.
  14. N. Koyuncu, I.A. Reyhancan, Dose evaluation of 142Pr radioisotope by Monte Carlo method in eye brachytherapy, Radiat. Phys. Chem. 177 (2020), https://doi.org/10.1016/j.radphyschem.2020.109150.
  15. Z.Y. Li, H.B. Gao, W.H. Zhang, X.F. Zhang, L.G. Hana, H.P. Cui, Preparation of 125I brachytherapy seeds by iodinating carbon bars with a silver coating, Appl. Radiat. Isot. 167 (2021), https://doi.org/10.1016/j.apradiso.2020.109426.
  16. J. Rogers, J. Lawrence, E. Chmura, C. Ehler, Ferreira, Dosimetric characterization of a novel 90Y source for use in the conformal superficial brachytherapy device, 2020, Phys. Med. 72 (2020), https://doi.org/10.1016/j.ejmp.2020.03.002.
  17. B. Camg, D. Tarim, Determination of dosimetric dependence for effective atomic number of LDR brachytherapy seed capsule by Monte Carlo simulation, Nucl. Eng. Technol. 55 (2023), https://doi.org/10.1016/j.net.2023.04.015.
  18. J.M. Rivard, B.M. Coursey, L.A. DeWerd, W.F. Hanson, M.S. Huq, G.S. Ibbott, M. G. Mitch, R. Nath, J.F. Williamson, American Association of Physicists in Medicine (AAPM) Task Group No.43 Report, P42, 2004.
  19. H.R. Baghani, A. Gheibi, A.A. Mowlavi, Comparing the inter-seed effect for some iodine-125 brachytherapy sources through a Monte Carlo simulation approach, Comput. Methods Progr. Biomed. 224 (2022), https://doi.org/10.1016/j.cmpb.2022.107000.
  20. P. Kommu, G.P. Singh, C. Shilpa Chakra, S. Jana, V. Kumar, A.S. Bhattacharyya, Preparation of ZnMn2O4 and ZnMn2O4/graphene nano composites by combustion synthesis for their electrochemical properties, Mater. Sci. Eng., B 261 (2020), https://doi.org/10.1016/j.mseb.2020.114647.
  21. L. Dong, J. Hao, H. Liu, W. Shi, J. Yang, J. Lian, Three-Dimensional ZnMn2O4 nanoparticles/carbon cloth anodes for high-performance flexible lithium-ion batteries, ChemistrySelect 5 (2020), https://doi.org/10.1002/slct.202000037.
  22. M. Puratchi Mani, V. Venkatachalam, K. Thamizharasan, M. Jothibas, Evaluation of Cubic-Like Advanced ZnMn2O4 electrode for high-performance supercapacitor applications, J. Electron. Mater. 50 (2021), https://doi.org/10.1007/s11664-021-08962-0.
  23. A. Pramanik, S. Chattopadhyay, S. Maiti, G. De, S. Mahanty, Hollow-porous nanospheres of ZnMn2O4 spinel: a high energy density cathode for rechargeable aqueous battery, Mater. Chem. Phys. 263 (2021), https://doi.org/10.1016/j.matchemphys.2021.124373.
  24. Y. Zhang, P. Zhang, Y. Xua, X. Song, H. Wang, T. Ma, Synthesis of pomegranate-shaped micron ZnMn2O4 with enhanced lithium storage capability, J. Materiomics 7 (2021), https://doi.org/10.1016/j.jmat.2021.01.005.
  25. P. Zhou, L. Zhong, Z. Liu, M. Liu, T. Zhou, Y. Zhao, X. Lai, J. Bi, D. Gao, Porous ZnMn2O4 hollow microrods: facile construction and excellent electrochemical performances for lithium ion batteries, Appl. Surf. Sci. 578 (2022), https://doi.org/10.1016/j.apsusc.2021.152087.
  26. D. Berger, S.V. Dyk, L. Beaulieu, T. Major, T. Kron, Modern tools for modern brachytherapy, Clin. Oncol. 35 (2023), https://doi.org/10.1016/j.clon.2023.05.003.
  27. P. Antunes, P. Siqueira, J. Shorto, H. Yoriyaz, Heterogeneous physical phantom for I-125 dose measurements and dose-to-medium determination, Brachytherapy (2023), https://doi.org/10.1016/j.brachy.2023.08.007.
  28. D. Rogers, Fifty years of Monte Carlo simulations for medical physics, Phys. Med. Biol. 51 (13) (2006), https://doi.org/10.1088/0031-9155/51/13/R17.
  29. M. Fuentealba, M. Santiba'nez, ˜ Monte Carlo evaluation of the dose sparing and dose enhancement by combination of Gd-infused tumor and 241Am source for an endocavitary brachytherapy geometry, Appl. Radiat. Isot. 163 (2020), https://doi.org/10.1016/j.apradiso.2020.109194.
  30. B. Juste, R. Miro, ' S. Morato, ' G. Verdu, S. Peris, Prostate cancer Monte Carlo dose model with 177Lutetium and 125Iodine treatments, Radiat. Phys. Chem. 174 (2020), https://doi.org/10.1016/j.radphyschem.2020.108908.
  31. R. Taylor, G. Yegin, D. Rogers, Benchmarking BrachyDose: voxel based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters, Med. Phys. 34 (2) (2007) 445-457.
  32. M.J. Chamberland, R.E. Taylor, D. Rogers, R.M. Thomson, Egs_brachy: a versatile and fast Monte Carlo code for brachytherapy, Phys. Med. Biol. 61 (2016) 8214.
  33. I. Kawrakow, J. Seuntjens, D. Rogers, F. Tessier, B. Walters, The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, NRCC Report No. PIRS-701, 2013.
  34. E. Pantelis, V. Peppa, V. Lahanas, E. Pappas, P. Papagiannis, BrachyGuide: a brachytherapy-dedicated DICOM RT viewer and interface to Monte Carlo simulation software, J. Appl. Clin. Med. Phys. 16 (1) (2015) 208-218.
  35. O. Chibani, C.-M. Ma C, HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators, Med. Phys. 41 (5) (2014) 051712.
  36. J. Briesmeister, A General Monte Carlo N-Particle Transport Code, MCNP. ORNL13221, Los Alamos National Laboratory, Oak Ridge, TN, USA, 2000.
  37. O. Chibani, J.F. Williamson, MCPI: a sub-minute Monte Carlo dose calculation engine for prostate implants, Med. Phys. 32 (12) (2005) 3688-3698.
  38. J. Dolan, Z. Li, J.F. Williamson, Monte Carlo and experimental dosimetry of an 125I brachytherapy seed, Med. Phys. 33 (12) (2006) 4675-4684.
  39. S. Agostinelli, et al., Geant4-A simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (2003), https://doi.org/ 10.1016/S0168-9002(03)01368-8.
  40. A. Albqoor, E. Ababneh, S. Okoor, I. Zahran, Validation of electromagnetic physics models and electron range in Geant4 Brachytherapy application, Nucl. Eng. Technol. 55 (2023), https://doi.org/10.1016/j.net.2022.09.018.
  41. Geant4. http://geant4.cern.ch/. Accessed on 20 April 2018..
  42. A. Poher, F. Berumen, Y. Ma, J.Perl, L. Beaulieu,Validation of the TOPAS Monte Carlo toolkit for LDR brachytherapy simulations,Phys. Med. 107, 2023,https://doi.org/10.1016/j.ejmp.2022.102516.
  43. H. Afsharpour, G. Landry, M. D'Amours, S. Enger, B. Reniers, E. Poon, J.-F. Carrier, F. Verhaegen, L. Beaulieu, Algebra: algorithm for the heterogeneous dosimetry based on geant4 for brachytherapy, Phys. Med. Biol. 57 (2012). https://10.1088/0031-9155/57/11/3273.
  44. G. Famulari, M. Renaud, C. Poole, M. Evans, J. Seuntjens, S. Enger, RapidBrachyMCTPS: a Monte Carlo-based treatment planning system for brachytherapy applications, Phys. Med. Biol., 30, 63(17), https://10.1088/1361-6560/aad97a.
  45. Gamma MCA - Gamma-ray spectroscopy web application (nuclearphoenix.xyz), https://spectrum.nuclearphoenix.xyz (Accessed 12 December 2023).
  46. NNDC, National Nuclear Data Center. https://nucleardata.nuclear.lu.se/(12 December 2023)..
  47. R.E. Wallace, J.J. Fan, ''Evaluation of a new brachytherapy iodine-125 source by AAPM TG43 formalism, Med. Phys. 25 (1998) 2190-2196.
  48. J.G. Wierzbicki, M.J. Rivard, D.S. Waid, V.E. Arterbery, ''Calculated dosimetric parameters of the IoGold 125I source model 3631-A, Med. Phys. 25 (1998) 2197-2199.
  49. R.E. Wallace, J.J. Fan, ''Report on the dosimetry of a new design 125Iodine brachytherapy source,'', Med. Phys. 26 (1999) 1925-1931.
  50. Z. Li, J.J. Fan, J.R. Palta, ''Experimental measurements of dosimetric parameters on the transverse axis of a new 125I source, Med. Phys. 27 (2000) 1275-1280.
  51. Dose rate constants for 125I, 103Pd, 192Ir and 169Yb brachytherapy sources: an EGS4 Monte Carlo study, Phys. Med. Biol. 43 (1998) 1557-1566.
  52. R. Wang, R. Sloboda, EGS4 dosimetry calculations for cylindrically symmetric brachytherapy sources, Med. Phys. 23 (1996) 1459-1465.
  53. Mark J. Rivard, Bert M. Coursey, Larry A. DeWerd, William F. Hanson, M. Saiful Huq, Geoffrey S. Ibbott, Michael G. Mitch, Ravinder Nath, and Jeffrey F. Williamson update of AAPM task group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations, Med. Phys. 31 (2004) 633, https://doi.org/10.1118/1.1646040.
  54. J. Mark, Rivard, Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M 125 I source, Med. Phys. 28 (2001) 629, https://doi.org/10.1118/1.1355306.