Acknowledgement
The construction of WINCS facility and experiments in this work were conducted under the auspices of the Nuclear Regulation Authority, Japan. The authors are grateful to Nuclear Engineering Co., Ltd., Mr. Ohwada, and Mr. Ohmori of JAEA who were involved in performing the experiments. We would also like to thank Dr. Wada of JAEA for helpful advice on LDV data analysis.
References
- H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light water power reactors, in: Proc. Third Int. Conf. Peac. Uses at. Energy, 1964, 93-102, https://www.osti.gov/scitech/biblio/4023463.
- A. Dehbi, The Effects of Noncondensable Gases on Steam Condensation under Turbulent Natural Convection Conditions, 1991. MIT.
- A. Dehbi, A generalized correlation for steam condensation rates in the presence of air under turbulent free convection, Int. J. Heat Mass Transf. 86 (2015) 1-15, https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.034.
- I.K. Huhtiniemi, M.L. Corradini, Condensation in the presence of noncondensable gases, Nucl. Eng. Des. 141 (1993) 429-446, https://doi.org/10.1016/0029-5493(93)90130-2.
- X. Cheng, P. Bazin, P. Cornet, D. Hittner, J.D. Jackson, J. Lopez Jimenez, A. Naviglio, F. Oriolo, H. Petzold, Experimental data base for containment thermalhydraulic analysis, Nucl. Eng. Des. 204 (2001) 267-284, https://doi.org/10.1016/S0029-5493(00)00311-3.
- W. Ambrosini, N. Forgione, F. Merli, F. Oriolo, S. Paci, I. Kljenak, P. Kostka, L. Vyskocil, J.R. Travis, J. Lehmkuhl, S. Kelm, Y.S. Chin, M. Bucci, Lesson learned from the SARNET wall condensation benchmarks, Ann. Nucl. Energy 74 (2014) 153-164, https://doi.org/10.1016/j.anucene.2014.07.014.
- M. Bucci, Experimental and Computational Analysis of Condensation Phenomena for the Thermalhydraulic Analysis of LWRs Containments, 2009. https://core.ac.uk/download/pdf/14697139.pdf.
- H. Muller, J. Lehmkuhl, S. Kelm, A. Hundhausen, A. Belt, H.J. Allelein, Development of a wall condensation model for coarse mesh containment scale applications, in: Proc. CFD4NRS-6, 2016, pp. 13-15.
- A. Hundhausen, H. Muller, S. Kelm, C. Druska, E.A. Reinecke, H.J. Allelein, CFDgrade measurements in a condensing boundary layer - results of the setcom facility, in: Proc. 17th Int. Top. Meet. Nucl. React. Therm. Hydraul., Xi'an, China, 2017.
- S. Kelm, H. Muller, A. Hundhausen, C. Druska, A. Kuhr, H.J. Allelein, Development of a multi-dimensional wall-function approach for wall condensation, Nucl. Eng. Des. 353 (2019) 110239, https://doi.org/10.1016/j.nucengdes.2019.110239.
- A. Dehbi, F. Janasz, B. Bell, Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach, Nucl. Eng. Des. 258 (2013) 199-210, https://doi.org/10.1016/j.nucengdes.2013.02.002.
- X.W. Jiang, E. Studer, S. Kudriakov, A simplified model of passive containment cooling System in a CFD code, Nucl. Eng. Des. 262 (2013) 579-588, https://doi.org/10.1016/j.nucengdes.2013.06.010.
- G. Vijaya Kumar, L.M.F. Cammiade, S. Kelm, K. Arul Prakash, E.M. Gross, H. J. Allelein, R. Kneer, W. Rohlfs, Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures, Appl. Therm. Eng. 187 (2021) 116546, https://doi.org/10.1016/j.applthermaleng.2021.116546.
- M. Ishigaki, S. Abe, Y. Shibamoto, T. Yonomoto, Numerical simulation of thermal flow with steam condensation on wall using the openfoam code, in: Proc. CFD4NRS-5, 2014.
- A. George, S. Kelm, X. Cheng, H.J. Allelein, Efficient CFD modelling of bulk condensation, fog transport and re-evaporation for application to containment scale, Nucl. Eng. Des. 401 (2023), https://doi.org/10.1016/j.nucengdes.2022.112067.
- H.C. Kang, M.H. Kim, Characteristics of film condensation of supersaturated steam-air mixture on a flat plate, Int. J. Multiphas. Flow 25 (1999) 1601-1618, https://doi.org/10.1016/S0301-9322(98)00077-9.
- J.C. de la Rosa, A. Escriva, L.E. Herranz, T. Cicero, J.L. Munoz-Cobo, Review on condensation on the containment structures, Prog. Nucl. Energy 51 (2009) 32-66, https://doi.org/10.1016/j.pnucene.2008.01.003.
- S. Soma, M. Ishigaki, S. Abe, Y. Sibamoto, Measurement of velocity and temperature profiles in boundary layer with steam condensation, in: Nureth-19, 2022. Brussels, Belgium.
- D.B. Degraaff, J.K. Eaton, Reynolds-number scaling of the flat-plate turbulent boundary layer, J. Fluid Mech. 422 (2000) 319-346, https://doi.org/10.1017/S0022112000001713.
- M. Bucci, M. Sharabi, W. Ambrosini, N. Forgione, F. Oriolo, S. He, Prediction of transpiration effects on heat and mass transfer by different turbulence models, Nucl. Eng. Des. 238 (2008) 958-974, https://doi.org/10.1016/j.nucengdes.2007.10.003.
- R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 1960. New York.
- E. Pohlhausen, Der Warmeaustausch zwischen festen Korpern und Flussigkeiten mit kleiner reibung und kleiner Warmeleitung, Z. Angew. Math. Mech. 1 (1921) 115-121, https://doi.org/10.1002/zamm.19210010205.
- A.J. Ede, Advances in free convection, in: Adv. Heat Transf., Academic Press, 1967, pp. 1-64, https://doi.org/10.1016/S0065-2717(08)70272-7.
- M.S. Raju, X.Q. Liu, C.K. Law, A formulation of combined forced and free convection past horizontal and vertical surfaces, Int. J. Heat Mass Transf. 27 (1984) 2215-2224, https://doi.org/10.1016/0017-9310(84)90080-2.
- C.J. Kobus, G.L. Wedekind, Modeling the local and average heat transfer coefficient for an isothermal vertical flat plate with assisting and opposing combined forced and natural convection, Int. J. Heat Mass Transf. 39 (1996) 2723-2733, https://doi.org/10.1016/0017-9310(95)00360-6.
- C. Greenshields, OpenFOAM V9 User Guide, The OpenFOAM Foundation, London, UK, 2021. https://doc.cfd.direct/openfoam/user-guide-v9.
- NIST Chemistry WebBook, (n.d.). https://webbook.nist.gov/chemistry/.
- C.R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys. 18 (1950) 517-519, https://doi.org/10.1063/1.1747673.
- R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, fourth ed., McGraw-Hill, New York, 1988.