DOI QR코드

DOI QR Code

Boundary layer measurements for validating CFD condensation model and analysis based on heat and mass transfer analogy in laminar flow condition

  • Shu Soma (Thermohydraulic Safety Research Group, Japan Atomic Energy Agency) ;
  • Masahiro Ishigaki (Department of Nuclear Safety Engineering, University of Fukui) ;
  • Satoshi Abe (Thermohydraulic Safety Research Group, Japan Atomic Energy Agency) ;
  • Yasuteru Sibamoto (Thermohydraulic Safety Research Group, Japan Atomic Energy Agency)
  • Received : 2023.12.05
  • Accepted : 2024.02.06
  • Published : 2024.07.25

Abstract

When analyzing containment thermal-hydraulics, computational fluid dynamics (CFD) is a powerful tool because multi-dimensional and local analysis is required for some accident scenarios. According to the previous study, neglecting steam bulk condensation in the CFD analysis leads to a significant error in boundary layer profiles. Validating the condensation model requires the experimental data near the condensing surface, however, available boundary layer data is quite limited. It is also important to confirm whether the heat and mass transfer analogy (HMTA) is still valid in the presence of bulk condensation. In this study, the boundary layer measurements on the vertical condensing surface in the presence of air were performed with the rectangular channel facility WINCS, which was designed to measure the velocity, temperature, and concentration boundary layers. We set the laminar flow condition and varied the Richardson number (1.0-23) and the steam volume fraction (0.35-0.57). The experimental results were used to validate CFD analysis and HMTA models. For the former, we implemented a bulk condensation model assuming local thermal equilibrium into the CFD code and confirmed its validity. For the latter, we validated the HMTA-based correlations, confirming that the mixed convection correlation reasonably predicted the sum of wall and bulk condensation rates.

Keywords

Acknowledgement

The construction of WINCS facility and experiments in this work were conducted under the auspices of the Nuclear Regulation Authority, Japan. The authors are grateful to Nuclear Engineering Co., Ltd., Mr. Ohwada, and Mr. Ohmori of JAEA who were involved in performing the experiments. We would also like to thank Dr. Wada of JAEA for helpful advice on LDV data analysis.

References

  1. H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light water power reactors, in: Proc. Third Int. Conf. Peac. Uses at. Energy, 1964, 93-102, https://www.osti.gov/scitech/biblio/4023463. 
  2. A. Dehbi, The Effects of Noncondensable Gases on Steam Condensation under Turbulent Natural Convection Conditions, 1991. MIT. 
  3. A. Dehbi, A generalized correlation for steam condensation rates in the presence of air under turbulent free convection, Int. J. Heat Mass Transf. 86 (2015) 1-15, https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.034. 
  4. I.K. Huhtiniemi, M.L. Corradini, Condensation in the presence of noncondensable gases, Nucl. Eng. Des. 141 (1993) 429-446, https://doi.org/10.1016/0029-5493(93)90130-2. 
  5. X. Cheng, P. Bazin, P. Cornet, D. Hittner, J.D. Jackson, J. Lopez Jimenez, A. Naviglio, F. Oriolo, H. Petzold, Experimental data base for containment thermalhydraulic analysis, Nucl. Eng. Des. 204 (2001) 267-284, https://doi.org/10.1016/S0029-5493(00)00311-3. 
  6. W. Ambrosini, N. Forgione, F. Merli, F. Oriolo, S. Paci, I. Kljenak, P. Kostka, L. Vyskocil, J.R. Travis, J. Lehmkuhl, S. Kelm, Y.S. Chin, M. Bucci, Lesson learned from the SARNET wall condensation benchmarks, Ann. Nucl. Energy 74 (2014) 153-164, https://doi.org/10.1016/j.anucene.2014.07.014. 
  7. M. Bucci, Experimental and Computational Analysis of Condensation Phenomena for the Thermalhydraulic Analysis of LWRs Containments, 2009. https://core.ac.uk/download/pdf/14697139.pdf. 
  8. H. Muller, J. Lehmkuhl, S. Kelm, A. Hundhausen, A. Belt, H.J. Allelein, Development of a wall condensation model for coarse mesh containment scale applications, in: Proc. CFD4NRS-6, 2016, pp. 13-15. 
  9. A. Hundhausen, H. Muller, S. Kelm, C. Druska, E.A. Reinecke, H.J. Allelein, CFDgrade measurements in a condensing boundary layer - results of the setcom facility, in: Proc. 17th Int. Top. Meet. Nucl. React. Therm. Hydraul., Xi'an, China, 2017. 
  10. S. Kelm, H. Muller, A. Hundhausen, C. Druska, A. Kuhr, H.J. Allelein, Development of a multi-dimensional wall-function approach for wall condensation, Nucl. Eng. Des. 353 (2019) 110239, https://doi.org/10.1016/j.nucengdes.2019.110239. 
  11. A. Dehbi, F. Janasz, B. Bell, Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach, Nucl. Eng. Des. 258 (2013) 199-210, https://doi.org/10.1016/j.nucengdes.2013.02.002. 
  12. X.W. Jiang, E. Studer, S. Kudriakov, A simplified model of passive containment cooling System in a CFD code, Nucl. Eng. Des. 262 (2013) 579-588, https://doi.org/10.1016/j.nucengdes.2013.06.010. 
  13. G. Vijaya Kumar, L.M.F. Cammiade, S. Kelm, K. Arul Prakash, E.M. Gross, H. J. Allelein, R. Kneer, W. Rohlfs, Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures, Appl. Therm. Eng. 187 (2021) 116546, https://doi.org/10.1016/j.applthermaleng.2021.116546. 
  14. M. Ishigaki, S. Abe, Y. Shibamoto, T. Yonomoto, Numerical simulation of thermal flow with steam condensation on wall using the openfoam code, in: Proc. CFD4NRS-5, 2014. 
  15. A. George, S. Kelm, X. Cheng, H.J. Allelein, Efficient CFD modelling of bulk condensation, fog transport and re-evaporation for application to containment scale, Nucl. Eng. Des. 401 (2023), https://doi.org/10.1016/j.nucengdes.2022.112067. 
  16. H.C. Kang, M.H. Kim, Characteristics of film condensation of supersaturated steam-air mixture on a flat plate, Int. J. Multiphas. Flow 25 (1999) 1601-1618, https://doi.org/10.1016/S0301-9322(98)00077-9. 
  17. J.C. de la Rosa, A. Escriva, L.E. Herranz, T. Cicero, J.L. Munoz-Cobo, Review on condensation on the containment structures, Prog. Nucl. Energy 51 (2009) 32-66, https://doi.org/10.1016/j.pnucene.2008.01.003. 
  18. S. Soma, M. Ishigaki, S. Abe, Y. Sibamoto, Measurement of velocity and temperature profiles in boundary layer with steam condensation, in: Nureth-19, 2022. Brussels, Belgium. 
  19. D.B. Degraaff, J.K. Eaton, Reynolds-number scaling of the flat-plate turbulent boundary layer, J. Fluid Mech. 422 (2000) 319-346, https://doi.org/10.1017/S0022112000001713. 
  20. M. Bucci, M. Sharabi, W. Ambrosini, N. Forgione, F. Oriolo, S. He, Prediction of transpiration effects on heat and mass transfer by different turbulence models, Nucl. Eng. Des. 238 (2008) 958-974, https://doi.org/10.1016/j.nucengdes.2007.10.003. 
  21. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 1960. New York. 
  22. E. Pohlhausen, Der Warmeaustausch zwischen festen Korpern und Flussigkeiten mit kleiner reibung und kleiner Warmeleitung, Z. Angew. Math. Mech. 1 (1921) 115-121, https://doi.org/10.1002/zamm.19210010205. 
  23. A.J. Ede, Advances in free convection, in: Adv. Heat Transf., Academic Press, 1967, pp. 1-64, https://doi.org/10.1016/S0065-2717(08)70272-7. 
  24. M.S. Raju, X.Q. Liu, C.K. Law, A formulation of combined forced and free convection past horizontal and vertical surfaces, Int. J. Heat Mass Transf. 27 (1984) 2215-2224, https://doi.org/10.1016/0017-9310(84)90080-2. 
  25. C.J. Kobus, G.L. Wedekind, Modeling the local and average heat transfer coefficient for an isothermal vertical flat plate with assisting and opposing combined forced and natural convection, Int. J. Heat Mass Transf. 39 (1996) 2723-2733, https://doi.org/10.1016/0017-9310(95)00360-6. 
  26. C. Greenshields, OpenFOAM V9 User Guide, The OpenFOAM Foundation, London, UK, 2021. https://doc.cfd.direct/openfoam/user-guide-v9. 
  27. NIST Chemistry WebBook, (n.d.). https://webbook.nist.gov/chemistry/. 
  28. C.R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys. 18 (1950) 517-519, https://doi.org/10.1063/1.1747673. 
  29. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, fourth ed., McGraw-Hill, New York, 1988.