• Title/Summary/Keyword: Gate Width

Search Result 368, Processing Time 0.024 seconds

Capacitance Characteristics of GaAs MESFET will Temperatures (온도 변화에 따른 GaAs MESFET의 정전용량에 대한 연구)

  • 박지홍;김영태;원창섭;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.445-448
    • /
    • 1999
  • In this Paper, we present simple physical model of the Capacitance characteristics for GaAs MESFET\`s in wide temperatures. In this model, gate-source and gate-drain capacitances are represented by analytical expressions which are classified into three different regions for bias voltage. This model contained the temperature dependent variable that is the built-in voltage and the depletion width. Using the equations obtained in this work a submicron gate length MESFET has simulated and theoretical result are in good agreement with the experimental measurement.

  • PDF

Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector with High Sensitivity

  • Jang, Juneyoung;Choi, Pyung;Lyu, Hong-Kun;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • In this paper, the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector with high sensitivity in the 408 nm - 941 nm range are presented. High sensitivity is important for photodetectors, which are used in several scientific and industrial applications. Owing to its inherent amplifying characteristics, the GBT MOSFET-type photodetector exhibits high sensitivity. The presented GBT MOSFET-type photodetector was designed and fabricated via a standard 0.18 ㎛ complementary metal-oxide-semiconductor (CMOS) process, and its characteristics were analyzed. The photodetector was analyzed with respect to its width to length (W/L) ratio, bias voltage, and incident-light wavelength. It was confirmed experimentally that the presented GBT MOSFET-type photodetector has over 100 times higher sensitivity than a PN-junction photodiode with the same area in the 408 nm - 941 nm range.

Threshold Voltage Shift for Doping Profile of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동현상)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.903-908
    • /
    • 2015
  • This paper has analyzed threshold voltage shift for doping profile of asymmetric double gate(DG) MOSFET. Ion implantation is usually used in process of doping for semiconductor device and doping profile becomes Gaussian distribution. Gaussian distribution function is changed for projected range and standard projected deviation, and influenced on transport characteristics. Therefore, doping profile in channel of asymmetric DGMOSFET is affected in threshold voltage. Threshold voltage is minimum gate voltage to operate transistor, and defined as top gate voltage when drain current is $0.1{\mu}A$ per unit width. The analytical potential distribution of series form is derived from Poisson's equation to obtain threshold voltage. As a result, threshold voltage is greatly changed by doping profile in high doping range, and the shift of threshold voltage due to projected range and standard projected deviation significantly appears for bottom gate voltage in the region of high doping concentration.

Fabrication and Characterization of 70 nm T-gate AlGaAs/InGaAs/GaAs metamorphic HEMT Device (70 nm T-게이트를 갖는 InGaAs/InAlAs/GaAs metamorphic HEMT 소자의 제작 및 특성)

  • 김성찬;임병옥;백태종;고백석;신동훈;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.19-24
    • /
    • 2004
  • In this paper, we have demonstrated the fabrication of a 70 nm foot print of the T-gate by using a positive resist ZEP520/P(MMA-MAA)/PMMA trilayer by double exposure method without a thin dielectric supporting layer on the substrate. The device performance was characterized by DC and RF measurement. The fabricated 70 nm InGaAs/InAlAs MHEMTS with 70 ${\mu}{\textrm}{m}$ unit gate width and 2 fingers showed good DC and RF characteristics of Idss, max =228.6 mA/mm, gm =645 mS/mm, and fT =255 GHz, respectively.

Numerical analysis of reaction forces in blast resistant gates

  • Al-Rifaie, Hasan;Sumelka, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.347-359
    • /
    • 2017
  • Blast resistant gates are required to be lightweight and able to mitigate extreme loading effect. This may be achieved through innovative design of a gate and its supporting frame. The first is well covered in literature while the latter is often overlooked. The design of supporting frame depends mainly on the boundary conditions and corresponding reaction forces. The later states the novelty and the aim of this paper, namely, the analysis of reaction forces in supporting structure of rectangular steel gates subjected to "far-field explosions". Flat steel plate was used as simplified gate structure, since the focus was on reaction forces rather than behaviour of gate itself. The analyses include both static and dynamic cases using analytical and numerical methods to emphasize the difference between both approaches, and provide some practical hints for engineers. The comprehensive study of reaction forces presented here, cover four different boundary conditions and three length to width ratios. Moreover, the effect of explosive charge and stand-off distance on reaction forces was also covered. The analyses presented can be used for a future design of a possible "blast absorbing supporting frame" which will increase the absorbing properties of the gate. This in return, may lead to lighter and more operational blast resistant gates.

Design of a high speed and high intergrated ISL(Intergrated Schottky Logic) using a merged transistor (병합트랜지스터를 이용한 고속, 고집적 ISL의 설계)

  • 장창덕;이용재
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.415-419
    • /
    • 1999
  • Many bipolar logic circuit of conventional occurred problem of speed delay according to deep saturation state of vertical NPN Transistor. In order to remove minority carries of the base region at changing signal in conventional bipolar logic circuit, we made transistor which is composed of NPN transistor shortened buried layer under the Base region, PNP transistor which is merged in base, epi layer and substrate. Also the Ring-Oscillator for measuring transmission time-delay per gate was designed as well. The structure of Gate consists of the vertical NPN Transistor, substrate and Merged PNP Transistor. In the result, we fount that tarriers which are coming into intrinsic Base from Emitter and the portion of edge are relatively a lot, so those make Base currents a lot and Gain is low with a few of collector currents because of cutting the buried layer of collector of conventional junction area. Merged PNP Transistor's currents are low because Base width is wide and the difference of Emitter's density and Base's density is small. we get amplitude of logic voltage of 200mv, the minimum of transmission delay-time of 211nS, and the minimum of transmission delay-time per gate of 7.26nS in AC characteristic output of Ring-Oscillator connected Gate.

  • PDF

Process and Structure Design for High Power Reverse-Conducting Gate Commutated Thyristors (RC- GCTs) (고전압 역도통 Gate Commutated Thyristor (RC-GCT) 소자의 공정 및 구조 설계)

  • Kim, Sang-Cheol;Kim, Eun-Dong;Zhang, Chang-Li;Kim, Nam-Kyun;Baek, Do-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1096-1099
    • /
    • 2001
  • The basic design structure of RC-GCTs (Reserve-Conducting Gate-Commutated Thyristors) is firstly given in this paper. The bulk of wafer is punch-through (PT) type with high resistivity and narrow N-base width. The photo-mask was designed upon the turn-off characteristics of GCT and solution of separation between GCT and diode part. The center part of Si wafer is free-wheeling diode (FWD) and outer is GCT part which has 240 fingers totally. The switching performance of GCT was investigated by Dessis of ISE. The basic manufacture process of 2500V-4500V RC-GCTs was given in this work. Additionally, the local carrier lifetime control by 5Mev proton irradiation was adopted so as to not only to have the softness of reverse recovering for FWD but for reduction of turn-off losses of GCT as well.

  • PDF

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.

Fabrication of MFISFET Compatible with CMOS Process Using $SrBi_2Ta_2O_9$(SBT) Materials

  • You, In-Kyu;Lee, Won-Jae;Yang, Il-Suk;Yu, Byoung-Gon;Cho, Kyoung-Ik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 2000
  • Metal-ferroelectric-insulator-semoiconductor field effect transistor (MFISFETs) were fabricated using CMOS processes. The Pt/SBT/NO combined layers were etched for forming a conformal gate by using Ti/Cr metal masks and a two step etching method, By the method, we were able to fabricate a small-sized gate with the dimension of $16/4{\mu}textrm{m}$ in the width/length of gate. It has been chosen the non-self aligned source and drain implantation process, We have deposited inter-layer dielectrics(ILD) by low pressure chemical vapor deposition(LPCVD) at $380^{circ}C$ after etching the gate structure and the threshold voltage of p-channel MFISFETs were about 1.0 and -2.1V, respectively. It was also observed that the current difference between the $I_{ON}$(on current) and $I_{OFF}$(off current) that is very important in sensing margin, is more that 100 times in $I_{D}-V_{G}$ hysteresis curve.

  • PDF

Design and Analysis of Gate-recessed AlGaN/GaN Fin-type Field-Effect Transistor

  • Jang, Young In;Seo, Jae Hwa;Yoon, Young Jun;Eun, Hye Rim;Kwon, Ra Hee;Lee, Jung-Hee;Kwon, Hyuck-In;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.554-562
    • /
    • 2015
  • This paper presents the design and analysis of gate-recessed AlGaN/GaN Fin-type Field-Effect Transistor (FinFET). The three-dimensional (3-D) technology computer-aided design (TCAD) simulations were performed to analyze the direct-current (DC) and radio-frequency (RF) characteristics for AlGaN/GaN FinFETs. The fin width ($W_{fin}$) and the height of GaN layer ($H_{GaN}$) are the design parameters used to improve the electrical performances of gate-recessed AlGaN/GaN FinFET.