• 제목/요약/키워드: Gate Bias Control

Search Result 52, Processing Time 0.022 seconds

High gain and High Efficiency Power Amplifier Using Controlling Gate and Drain Bias Circuit for WPT (무선전력전송용 게이트 및 드레인 조절 회로를 이용한 고이득 고효율 전력증폭기)

  • Lee, Sungje;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.52-56
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented using a gate and drain bias control circuit for WPT (Wireless Power Transmission). This control circuit has been employed to improve the PAE (Power Added Efficiency). The gate and drain bias control circuits consists of a directional coupler, power detector, and operation amplifier. A high gain two-stage amplifier using a drive amplifier is used for the low input stage of the power amplifier. The proposed power amplifier that uses a gate and drain bias control circuit can have high efficiency at a low and high power level. The PAE has been improved up to 80.5%.

A Low Distortion and Low Dissipation Power Amplifier with Gate Bias Control Circuit for Digital/Analog Dual-Mode Cellular Phones

  • Maeng, Sung-Jae;Lee, Chang-Seok;Youn, Kwang-Jun;Kim, Hae-Cheon;Mun, Jae-Kyung;Lee, Jae-Jin;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • v.19 no.2
    • /
    • pp.35-47
    • /
    • 1997
  • A power amplifier operating at 3.3 V has been developed for CDMA/AMPS dual-mode cellular phones. It consists of linear GaAs power MESFET's, a new gate bias control circuit, and an output matching circuit which prevents the drain terminal of the second MESF from generating the harmonics. The relationship between the intermodulation distortion and the spectral regrowth of the power amplifier has been investigated with gate bias by using the two-tone test method and the adjacent channel leakage power ratio (ACPR) method of CDMA signals. The dissipation power of the power amplifier with a gate bias control circuit is minimized to below 1000 mW in the range of the low power levels while satisfying the ACPR of less than -26 dBc for CDMA mode. The ACPR of the power amplifier is measured to be -33 dBc at a high output power of 26 dBm.

  • PDF

Performance Enhancement of 3-way Doherty Power Amplifier using Gate and Drain bias control (Gate 및 Drain 바이어스 제어를 이용한 3-way Doherty 전력증폭기와 성능개선)

  • Lee, Kwang-Ho;Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this thesis, 50W Doherty amplifier was designed and implemented for Beyond 3G's repeater and base-station. Auxiliary amplifier of doherty amplifier was implemented by Gate bias control circuit. Though gate bias control circuit solved auxiliary's bias problem, output characteristics of doherty amplifier was limited. To enhance the output characteristic relativize Drain control circuit And To improve power efficiency make 3-way Doherty power amplifier. therefore, 3-way GDCD (Gate and Drain bias Control Doherty) power amplifier is embodied to drain bias circuit for General Doherty power amplifier. The 3-way GDCD power amplifier composed of matching circuit with chip capacitor and micro strip line using FR4 dielectric substance of specific inductive capacity(${\varepsilon}r$) 4.6, dielectric substance height(H) 30 Mills, and 2.68 Mills(2 oz) of copper plate thickness(T). Experiment result satisfied specification of amplifier with gains are 57.03 dB in 2.11 ~ 2.17 GHz, 3GPP frequency band, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and ACLR characteristics at 5MHz offset frequency band station is -40.45 dBc. Especially, 3-way DCHD power amplifier showed excellence efficiency performance improvement in same ACLR than general doherty power amplifier.

Performance Enhancement of Hybrid Doherty Amplifier using Drain bias control (Drain 바이어스 제어를 이용한 Hybrid Doherty 증폭기의 성능개선)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.128-136
    • /
    • 2006
  • In this paper, design and implement 50W Doherty power amplifiers for 3GPP repeater and base station transceiver system. Efficiency improvement and high power property of ideal Doherty power amplifier is distinguishable; however bias control for implementation of Doherty(GDCHD) amplifier is difficult. To solve the problem, therefore, GDCHD(Gate and Drain Control Hybrid Doherty) power amplifier is embodied to drain bias adjustment circuit to Doherty power amplifier with gate bias adjustment circuit. Experiment result shows that $2.11{\sim}2.17\;GHz$, 3GPP operating frequency band, with 57.03 dB gain, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and -40.45 dBc ACLR characteristic in 5MHz offset frequency band. Each of the parameter satisfied amplifier specification which we want to design. Especially, GDCHD power amplifier shows proper efficiency performance improvement in uniformity ACLR than Doherty power amplifier.

Feasibility Study of Non-volatile Memory Device Structure for Nanometer MOSFET (나노미터 MOSFET비휘발성 메모리 소자 구조의 탐색)

  • Jeong, Ju Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.41-45
    • /
    • 2015
  • From 20nm technology node, the finFET has become standard device for ULSI's. However, the finFET process made stacking gate non-volatile memory obsolete. Some reported capacitor-less DRAM structure by utilizing the FBE. We present possible non-volatile memory device structure similar to the dual gate MOSFET. One of the gates is left floating. Since body of the finFET is only 40nm thick, control gate bias can make electron tunneling through the floating gate oxide which sits across the body. For programming, gate is biased to accumulation mode with few volts. Simulation results show that the programming electron current flows at the interface between floating gate oxide and the body. It also shows that the magnitude of the programming current can be easily controlled by the drain voltage. Injected electrons at the floating gate act similar to the body bias which changes the threshold voltage of the device.

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

The implementation of Gate Control Hybrid Doherty Amplifier (효율개선을 위한 Gate 제어 Hybrid Doherty 증폭기 구현)

  • Son Kil-young;Lee Suk-hui;Bang Sung-il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, design and implement 60W Doherty power amplifiers for 3GPP repeater and base station transceiver system. Efficiency improvement and high power property of Doherty power amplifier is distinguishable; however implementation of assistance amplifer is difficult, though. To solve the problem, therefore, GCHD (Gate Control Hybrid Doherty) power amplifier is embodied to gate bias adjusament circuit of assistance amplifier to General Doherty power amplifier. Experiment result shows that $2.11\~2.17GHz$, 3GPP operating frequency band, with 62.55 dB gain, PEP output is 50,76 dBm, W-CDMA average power is 47.81 dBm, and -40.05 dBc ACLR characteristic in 5MHz offset frequency band. Each of the parameter satisfied amplifier specification which we want to design. Especially, GCHD power amplifier shows proper efficiency performance improvement in uniformity ACLR than general power amplifier.

Gate-Bias Control Technique for Envelope Tracking Doherty Power Amplifier (Envelope Tracking 도허티 전력 증폭기의 Gate-Bias Control Technique)

  • Moon, Jung-Hwan;Kim, Jang-Heon;Kim, Il-Du;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.807-813
    • /
    • 2008
  • The gate-biases of the Doherty power amplifier are controlled to improve the linearity performance. The linearity improvement mechanism of the Doherty amplifier is the harmonic cancellation of the carrier and peaking amplifier at the output power combining point. However, it is difficult to cancel the harmonic power for the broader power range because the condition for cancelling is varied by power. For the linearity improvement, we have explored the linearity characteristic of the Doherty amplifier according to the input power and gate biases of the carrier and peaking amplifier. To extend the region of harmonic power cancellation, we have injected the proper gate bias to the carrier and peaking amplifier according to the input power levels. To validate the linearity improvement, the Doherty amplifier is designed using Eudyna 10-W PEP GaN HEMT EGN010MKs at 2.345 GHz and optimized to achieve a high linearity and efficiency at an average output power of 33 dBm, backed off about 10 dB from the $P_{1dB}$. In the experiments, the envelope tracking Doherty amplifier delivers a significantly improved adjacent channel leakage ratio performance of -37.4 dBc, which is an enhancement of about 2.8 dB, maintaining the high PAE of about 26 % for the WCDMA 1-FA signal at an average output power of 33 dBm. For the 802.16-2004 signal, the amplifier is also improved by about 2 dB, -35 dB.

Threshold Voltage Control of Pentacene Thin-Film Transistor with Dual-Gate Structure

  • Koo, Jae-Bon;Ku, Chan-Hoe;Lim, Sang-Chul;Lee, Jung-Hun;Kim, Seong-Hyun;Lim, Jung-Wook;Yun, Sun-Jin;Yang, Yong-Suk;Suh, Kyung-Soo
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.27-30
    • /
    • 2006
  • This paper presents a comprehensive study on threshold voltage $(V_{th})$ control of organic thin-film transistors (OTFTs) with dual-gate structure. The fabrication of dual-gate pentacene OTFTs using plasma-enhanced atomic layer deposited (PEALD) 150 nm thick $Al_{2}O_{3}$ as a bottom gate dielectric and 300 nm thick parylene or PEALD 200 nm thick $Al_{2}O_{3}$ as both a top gate dielectric and a passivation layer was investigated. The $V_{th}$ of OTFT with 300 nm thick parylene as a top gate dielectric was changed from 4.7 V to 1.3 V and that with PEALD 200 nm thick $Al_{2}O_{3}$ as a top gate dielectric was changed from 1.95 V to -9.8 V when the voltage bias of top gate electrode was changed from -10 V to 10 V. The change of $V_{th}$ of OTFT with dual-gate structure was successfully investigated by an analysis of electrostatic potential.

Design of Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor (양극성 이중 독립 게이트 실리콘 나노와이어 전계 효과 트랜지스터 설계)

  • Hong, Seong-Hyeon;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2892-2898
    • /
    • 2015
  • We propose a new Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor(DIG Ambi-SiNWFET). The proposed transistor has two types of gate such as polarity gate and control gate. The polarity gate determines the operation that the gate bias controls NMOSFET or PMOSFET. The voltage of control gate controls the current characteristic of the transistor. We investigated systematically work functions of the two gates and source/drain to operate ambipolar current-voltage characteristics using 2D device simulator. When the work functions of polarity gate, control gate and source/drain are 4.75eV, 4.5eV, and 4.8eV, respectively, it showed the obvious ambipolar characteristics.