DOI QR코드

DOI QR Code

Design of Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor

양극성 이중 독립 게이트 실리콘 나노와이어 전계 효과 트랜지스터 설계

  • Hong, Seong-Hyeon (Department of Electronic Engineering, Hankyong National University) ;
  • Yu, YunSeop (Department of Electrical, Electronic and Control Engineering, Hankyong National University)
  • Received : 2015.08.25
  • Accepted : 2015.09.30
  • Published : 2015.12.31

Abstract

We propose a new Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor(DIG Ambi-SiNWFET). The proposed transistor has two types of gate such as polarity gate and control gate. The polarity gate determines the operation that the gate bias controls NMOSFET or PMOSFET. The voltage of control gate controls the current characteristic of the transistor. We investigated systematically work functions of the two gates and source/drain to operate ambipolar current-voltage characteristics using 2D device simulator. When the work functions of polarity gate, control gate and source/drain are 4.75eV, 4.5eV, and 4.8eV, respectively, it showed the obvious ambipolar characteristics.

양극성 이중 독립 게이트 실리콘 나노와이어 전계 효과 트랜지스터를 새롭게 제안한다. 제안한 트랜지스터는 극성 게이트와 제어 게이트를 가지고 있다. 극성게이트의 바이어스에 따라서 N형과 P형 트랜지스터의 동작을 결정할 수 있고 제어 게이트의 전압에 따라 트랜지스터의 전류 특성을 제어할 수 있다. 2차원 소자 시뮬레이터를 이용해서 양극성 전류-전압 특성이 동작하도록 두 개의 게이트들과 소스 및 드레인의 일함수를 조사했다. 극성게이트 4.75 eV, 제어게이트 4.5 eV, 소스 및 드레인 4.8 eV일 때 명확한 양극성 특성을 보였다.

Keywords

References

  1. G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, no. 8, pp. 114-117, Apr. 1965.
  2. D. Sacchetto, Y. Leblebici, and G. D. Micheli, "Ambipolar gate-controllable SiNW FETs for configurable logic circuits with improved expressive capability," IEEE Electron Device Lett., vol. 33, no. 2, pp. 143-145, 2012. https://doi.org/10.1109/LED.2011.2174410
  3. R. A. Vega, and T.-J. K. Liu, "A Comparative Study of Dopant-Segregated Schottky and Raised Source/Drain Double-Gate MOSFETs", IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2665-2677, Oct. 2008. https://doi.org/10.1109/TED.2008.2003024
  4. M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "2D analytical calculation of the electric field in lightly doped Schottky barrier double-gate MOSFETs and estimation of the tunneling/thermionic current", Solid-State Electronics, vol. 63, pp.119-129, 2011. https://doi.org/10.1016/j.sse.2011.05.013
  5. M. Balaguer, B. Iniguez, and J.B. Roldan, "An analytical compact model for Schottky-barrier double gate MOSFETs", Solid-State Electronics, vol. 64, pp. 78-84, 2011. https://doi.org/10.1016/j.sse.2011.06.045
  6. H. A. Vladimirescu, A. Amara, and C. Anghel, "An analysis on the ambipolar current in Si double-gate tunnel FETs", Solid-State Electronics, vol. 70, pp. 67-72, 2012. https://doi.org/10.1016/j.sse.2011.11.009
  7. M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "Performance study of a Schottky barrier double-gate MOSFET using a two-dimensional analytical model", IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 884-886, Feb. 2013. https://doi.org/10.1109/TED.2012.2235146
  8. G. Zhu, X. Zhou, Y.-K. Chin, K. L. Pey, J. Zhang, G. H. See, S. Lin, Y. Yan, and Z. Chen, "Subcircuit compact model for dopant-segregated Schottky gate-all-around Si-Nanowire MOSFETs", IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 772-781, Apr. 2010. https://doi.org/10.1109/TED.2010.2041513
  9. G. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, S. Lin, Y.-K. Chin, and K. L. Pey, "A Compact Model for Undoped Silicon-Nanowire MOSFETs With Schottky- Barrier Source/Drain", IEEE Trans. Electron Devices, vol. 56, no. 5, pp. 1100-1109, May 2009. https://doi.org/10.1109/TED.2009.2015161
  10. D. Sacchetto, V. Savu, G. D. Micheli, J. Brugger, and Y. Leblebici, "Ambipolar silicon nanowire FETs with stenciled-deposited metal gate," Microelectron Eng., vol. 88, pp. 2732-2735, 2011. https://doi.org/10.1016/j.mee.2010.12.117
  11. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P.-E. Gaillardon, Y. Leblebici, and G. De Micheli, "Polarity Control in Double-Gate, Gate-All-Around Vertically Stacked Silicon Nanowire FETs," in Proc. IEEE IEDM, Dec. 2012, pp. 183-186.
  12. J. L. Padilla, L. Knoll, F. Gamiz, Q. T. Zhao, A. Godoy, and S. Mantl, "Simulation of Fabricated 20-nm Schottky Barrier MOSFETs on SOI: Impact of Barrier Lowering", IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1320-1327, 2012. https://doi.org/10.1109/TED.2012.2187657
  13. ATLAS User's Manual Device Simulation Software, SILVACO, Inc., Santa Clara, CA, Nov 10, 2014.
  14. K. Matsuzawa, K. Uchida, and A. Nishiyama, "A Unified Simulation of Schottky and Ohmic Contacts" IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 103-108, 2000. https://doi.org/10.1109/16.817574