• Title/Summary/Keyword: Gap gas

Search Result 625, Processing Time 0.026 seconds

FEM Simulation of Lap Joint in $CO_2$ Laser Welding of Zn-coated Steel (아연도금 강판의 $CO_2$ 레이저 용접에서 겹치기 용접의 FEM 시뮬레이션)

  • 김재도;조치용
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.52-62
    • /
    • 1998
  • Laser beam welding of zinc-coated steel, especially lap joints, has a problem of zinc vapor produced during welding which has a low vaporization temperature of 906.deg. C. It is lower than the melting temperature of steel (1500.deg. C). The high pressure formed by vaporization of zinc during laser welding splatters the molten pool and creates porosities in weld. During laser lap welds of zinc-coated steel sheets with CW CO$_{2}$ laser the gap size has been analyzed and simulated using a FEM. The simulation has been carried out in the range of gap aetween 0 and 0.16 mm. The vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In the case of too small gap size, zinc gas has not ejected and existed between two sheets. Therefore heat was difficult to conduct from the upper sheet to lower sheet and the upper sheet could over-melted. In the case of large gap size the zinc gas has been prefectly ejected but only a part of lower sheet has melted. The optimum range of gap size in the lap welds of zinc-coated steel sheets has been calculated to be between 0.08 and 0.12 mm. According to the comparison of experiment, the simulation is proved to be acceptable and applicable to laser lap welds.

  • PDF

Numerical Study of Gap Size Ratio Effect for Noncondensable Gas Ventilation in Condensers (응축기의 비응축 가스 배출 타입에 따른 틈 간격 비율의 영향에 대한 수치적 연구)

  • Je, Jun-Ho;Kim, Soo-Jea;Choi, Chi-Woong;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • A numerical analysis was carried out to estimate the effect of the gap size ratio on the performance of condensers under noncondensable gas ventilation using the porous medium approach (PMA). In the PMA, the details of the tube bundle in the condenser are considered to be those of a porous medium, and the flow resistance term is added in the momentum equation. Three-dimensional analysis of the condensation for a McAllister condenser was conducted with the PMA using Fluent and user-defined functions (UDFs). The gap size effect on the condensation was negligible under pure steam conditions. However, the gap size effect was dominant in condensation with noncondensable gas and external venting. As the gap size decreased, the condensation rate increased for noncondensable gas in an external venting system.

A Study of Discharge Characteristics in Xe-Ne Gas Mixture for ac PDP with Long Gap Hump Electrode (Long Gap Hump 전극구조를 가진 ac PDP에서의 Xe-Ne 가스의 방전 특성 연구)

  • Heo, Jong-Cheol;Ok, Jung-Woo;Lee, Don-Kyu;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.155-159
    • /
    • 2009
  • To increase the luminance and luminous efficacy in the discharge for alternating current plasma display panel (ac PDP), the increment of Xe contents and long discharge gap are necessary. However, the driving voltage and the cost of driving circuit increases in the high Xe contents and long discharge path condition. In this paper, a long gap ITO hump electrode (LGH) model for discharge cells of ac PDP is evaluated in the various Xe contents($5{\sim}20%$). The discharge voltage of LGH structure is lower about 30V than that of ITa reference structure with same main discharge gap. The LGH structure has lower power consumption and higher luminance than those of reference structure, respectively. Also, the luminous efficacy of LGH structure is higher about 20% than that of ITO reference structure in the 20% Xe contents.

The Implementation of high temperature displacement sensors and sensors drive system for Air-preheater (공기예열기를 위한 고온용 변위센서 및 센서드라이브 시스템 구현)

  • Cho, Hyang-Duck;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.453-458
    • /
    • 2011
  • Air preheater uses the waste heat of the gas which burnt from the boiler from the thermal power plant. Air preheater it is established in the exit of the boiler follows in change of temperature combustion gas and the vibration which it follows in thermal expansion and contraction occurs. Air preheater with ruse the gas the seal the place where it includes a gap in the structure which it does, the vibration which it follows in change of temperature fluctuates the displacement of gap, fluctuation of the leakage quantity which occurs from gap there is a possibility of decreasing an effect to system. Part system it will be able to control the interval of gap in order, control mechanism about under establishing the place where it does the gap control actively, measures a gap the displacement sensor for is necessary. Like this displacement sensor the condition must do continuous running from atmosphere of high temperature was demanded all. This paper investigates the implementation instance of hazard existing which implement the high temperature displacement sensor, it analyzes, produces the result which it examines a model, it was a presentation. These results with the fact that it will contribute in the research for the implementation and a localization of the high temperature displacement sensor and advanced air preheater.

  • PDF

A Study on the Safe Gap for Explosion-proof (내압방폭을 위한 Safe Gap의 측정에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • In case of using the electrical apparatus in the hazardous atmosphere which exist flammable gas mixtures, There is a dangerosity of gas explosion accident by the electrical spark. The most general method to prevent the explosion by the spark is to use the flame-proof type electrical apparatus to isolate the ignition source. from the flammable atmosphere. But actualy it is impossible to isolate the ignition sources from the atmosphere. So it was needed to find the safe gap which prevent ignition of flammable atmosphere by transmission of flame or heat when a flammable gas mixture exploded inside the apparatus. In this study we tried to find the maximum experimental safe gap(MESG) of $H_2$-air, and $CH_4$-air mixtures by using the 8 litre spherical vessel with 25mm flange. The experiment parameter were ignition position, concentration and initial pressure before explosion. From the experiment the ignition position was affected to the MESG. MESG value was minimum near the stoichiometric concentration of gas mixtures, and according to the increase of initial pressure MESG was decreased.

  • PDF

A Study on the Correlation of MESG and Explosion Pressure (최대실험안전틈새(MESG)와 폭발압력의 상관관계에 대한 연구)

  • Hwang, Kyungyong;Shin, Woonchul;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2016
  • Electrical apparatuses for use in the presence of explosive gas atmospheres have to be special designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of Maximum Experimental Safe Gap(MESG) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of propane and acetylene by the test method and procedure of IEC 60079-20-1:2010.When the minimum MESG is measured, the concentration of propane, acetylene in the air is higher than the stoichiometric point and their explosion pressure is the highest value.

A Study on the MESG of Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 MESG에 관한 연구)

  • Hwang, Kyungyong;Byeon, Junghwan;Rhee, Kyunam;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.30-37
    • /
    • 2016
  • Electrical apparatuses for use in the presence of flammable gas atmospheres have to be specially designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of MESG(Maximum Experimental Safe Gap) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of ternary gas mixtures(propane-acetylene-air) by the test method and procedure of IEC 60079-20-1:2010. As a result, the composition of propane gas that has lower explosive power than acetylene gas in the ternary gas mixtures makes greater effects on MESG and explosion pressure.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

Analysis of SF6, N2 Pressure Characteristic of Spark Gap According to Simulation (시뮬레이션을 통한 스파크갭의 SF6, N2 압력 특성 분석)

  • Choi, Sun-Ho;Lee, Tae-Woo;Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.172-177
    • /
    • 2014
  • Industrial, medical, environment and agriculture application of pulse power technology have been developing rapidly in many field. In order to make use in the form of pulses is applied to the pulse forming technique. At this time, spark gap is generally used for the pulse forming. Spark gap may be possible to simulate the shape of the electrode, to know the uniform or non-uniform electric field of the electrode structure. Further, it can be determined using Paschen's law applied pressure of the insulating gas in accordance with the voltage which is created using the value of the electric field. In this paper, we tried to found using a formula and the simulation process to determine the pressure. The value of the electric field is different according to the shape of the electrode. So, the range of pressure applied also varies. In order to withstand the 100 kV with a gap of 5 mm, the nitrogen gas must be applied to about 7 bar in the electrode structure. On the other hand, in the same conditions, Sulfur hexafluoride gas must be applied to about 2 bar. Consequently, the Sulfur hexafluoride gas has a higher insulation properties than nitrogen gas may be applied to low pressure at the same conditions.

Improvements of the luminous efficiency of mercury-free fluorescent lamps via structural and complex gas mixture changes

  • Oh, Byung-Joo;Jung, Jae-Chul;Seo, In-Woo;Kim, Hyuk;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.809-812
    • /
    • 2008
  • Structural parameter variation effects (changing the coplanar gap under different discharge dimensions) and use of complex gas mixtures (He, Ne, Ar and Xe) in mercury-free fluorescent lamps are studied in this paper. Pure Neon gas is the best buffer gas for obtaining high luminous efficiency in mercury-free fluorescent lamps. It is shown that with a shorter coplanar gap (30mm), a high luminous efficiency can be obtained at low operating voltage, as well as high luminance uniformity and stable discharge with a Ne-Xe 20% gas mixture.

  • PDF