DOI QR코드

DOI QR Code

A Study on the MESG of Flammable Ternary Gas Mixtures

3성분계 인화성 혼합가스의 MESG에 관한 연구

  • Hwang, Kyungyong (Korea Occupational Safety and Health Agency) ;
  • Byeon, Junghwan (Korea Occupational Safety and Health Agency) ;
  • Rhee, Kyunam (Dept. of Environmental and Safety Engineering, KOREA POLYTECHNIC University) ;
  • Lee, Taeck-Kie (Dept. of Electrical Electronics & Control Engineering, HANKYUNG University)
  • 황경용 (한국산업안전보건공단) ;
  • 변정환 (한국산업안전보건공단) ;
  • 이규남 (한국산업기술대학교 환경안전공학과) ;
  • 이택기 (한경대학교 전기전자 제어공학과)
  • Received : 2016.02.22
  • Accepted : 2016.05.20
  • Published : 2016.06.30

Abstract

Electrical apparatuses for use in the presence of flammable gas atmospheres have to be specially designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of MESG(Maximum Experimental Safe Gap) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of ternary gas mixtures(propane-acetylene-air) by the test method and procedure of IEC 60079-20-1:2010. As a result, the composition of propane gas that has lower explosive power than acetylene gas in the ternary gas mixtures makes greater effects on MESG and explosion pressure.

내압 방폭전기기계 기구는 인화성 가스가 존재하는 위험장소에서 사용되어도 인화성 가스의 점화원이 되지 않는 구조로 이루어져야 한다. 또한 전기 스파크를 발생시키는 부품이 점화원이 되어 기계 기구 내부에서 폭발 시 최대 압력에 견디고 내부 화염이 외부로 전파되어 가스나 증기 폭발을 일으키지 않도록 설계되어야 한다. 본 연구에서는 화염 틈새를 통해 외부로 분사되는 연소 생성물의 분사가 외부 가스나 증기를 점화시킬 정도의 온도나 에너지를 가질 수 없도록 하는 MESG(Maximum Experimental Safe Gap)의 중요한 물리적인 메커니즘에 대해 규명하였다. IEC 60079-20-1:2010 기준에 의해 프로판- 아세틸렌-공기로 이루어진 3성분계 혼합가스의 MESG를 실험하여 MESG 값을 측정하고 가스 폭발시의 최대 폭발압력을 측정하였다. 결과로는 아세틸렌 가스 보다는 폭발력이 낮은 프로판 가스의 조성이 MESG 값과 폭발압력에 더욱 큰 변수로 작용함을 알 수 있었다.

Keywords

References

  1. Hwang, K.Y., "AStudy on the Effect to Ignition Limits of Explosive Gas of Electrode Material in the Test of Intrinsically Safety Electric Apparatus", Hanyang University,(1994)
  2. IEC 60079-1:2012 :Electrical Apparatus for Explosive Gas Atmosphere-Part 1;flameproof "d"
  3. IEC 60079-20-1:2010 MATERIAL CHARACTERISTICS FOR GAS AND VAPOUR CLASSIFICATION
  4. Beyer, M, Uber den Zunddurchsclag explodierender Gasgemische an Gehausen der Zundschutzart 'Druckfeste Kapselung", VDI Reiche,(1996)
  5. Kanury.A.M, Introduction to combustion phenomena( for fire, incineration, pollution, and energy applications). New York, Gordon and Breach,(1975)
  6. Boust, B.,J.Sottom, et al., "Unsteadt heat transfer during the turbulent combustion of a lean premixed methane-air flame:Effect of pressure and gas dynamics." Proceedings of the Combustion Institute 31(1):pp.1411-1418,(2007) https://doi.org/10.1016/j.proci.2006.07.176
  7. Redker, T., Classification of flammable gases and vapours by the flameproof safe gap and the incendivity of electrical sparks, Physikalisch Technische Bundenstalt, Heat Division, Braunschweig,(1981)
  8. Tennekes, H.a.L., J.L., A first course in turbulence London, England, The MIT press.,(1994)
  9. Heizaburo TSURUMI, Study on Maximum Safe Gaps with Propane/Hydrogen with Air Mixtures, Ministry of Labour, The Research Institute of Industrial Safety(Japan), (1975)