DOI QR코드

DOI QR Code

Numerical Study of Gap Size Ratio Effect for Noncondensable Gas Ventilation in Condensers

응축기의 비응축 가스 배출 타입에 따른 틈 간격 비율의 영향에 대한 수치적 연구

  • Je, Jun-Ho (Dept. of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Kim, Soo-Jea (Dept. of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Choi, Chi-Woong (Chemistry Department, University of Wyoming) ;
  • Kim, Moo-Hwan (Division of Advanced of Nuclear Engineering, Pohang University of Science and Technology)
  • 제준호 (포항공과대학교 기계공학과) ;
  • 김수재 (포항공과대학교 기계공학과) ;
  • 최치웅 (와이오밍주립대학교 화학과) ;
  • 김무환 (포항공과대학교 첨단원자력공학부)
  • Received : 2011.07.27
  • Accepted : 2011.09.30
  • Published : 2012.01.01

Abstract

A numerical analysis was carried out to estimate the effect of the gap size ratio on the performance of condensers under noncondensable gas ventilation using the porous medium approach (PMA). In the PMA, the details of the tube bundle in the condenser are considered to be those of a porous medium, and the flow resistance term is added in the momentum equation. Three-dimensional analysis of the condensation for a McAllister condenser was conducted with the PMA using Fluent and user-defined functions (UDFs). The gap size effect on the condensation was negligible under pure steam conditions. However, the gap size effect was dominant in condensation with noncondensable gas and external venting. As the gap size decreased, the condensation rate increased for noncondensable gas in an external venting system.

본 논문은 응축기의 비 응축 가스 배출 타입에 따른 틈 간격의 비율이 응축기의 성능에 미치는 영향에 관하여 다공성 매질 개념을 적용한 수치적 연구에 관한 것이다. 다공성 매질의 개념을 이용한 응축기의 성능 해석에서는 응축기기 내부의 다관군을 다공성 매질로 간주하며, 다관군에 의한 압력 강하는 상관식으로 반영한다. 상용수치해석 프로그램인 Fluent 와 user-defined functions 를 이용하여 McAllister 응축기에 다공성 매질 개념을 적용하여 3 차원 응축량을 해석하였다. 순수증기의 해석에서는 틈 간격이 응축량에 미치는 영향이 거의 없었다. 그러나 비 응축가스가 포함되어 있으며, 외부 배출의 경우 틈 간격은 응축량에 매우 큰 영향을 미쳤는데, 틈 간격이 줄어듦에 따라 응축량이 매우 증가하는 결과를 얻었다.

Keywords

References

  1. Karlsson, T. and Vamling, L., 2005, "Flow Fields in Shell-and-Tube Condensers," International Journal of Refrigeration, Vol. 28, pp. 706-713. https://doi.org/10.1016/j.ijrefrig.2004.12.008
  2. Zang, C., Sousa, A. C. M. and Venart, J. E. S., 1991, "Numerical Simulation of Different Types of Steam Surface Condensers," Journal of Energy resources Technology, Vol. 113, pp. 63-70. https://doi.org/10.1115/1.2905788
  3. Zang, C., Sousa, A. C. M. and Venart, J. E. S., 1993, "The Numerical and Experimental Study of a Power Plant Condenser, Journal of heat transfer, Vol. 115, pp. 435-445. https://doi.org/10.1115/1.2910696
  4. Zang, C. and Bokil, A., 1997, "A Quasi-Three- Dimensional Approach to Simulate the Two-Phase Fluid Flow and Heat Transfer in Condensers" International Journal of heat and mass transfer, Vol. 40, No. 15, pp. 3537-3546 https://doi.org/10.1016/S0017-9310(97)00014-8
  5. Ormiston, S. J., Raithby, G. D. and Carlucci, L. N., 1995, "Numerical Modeling of Power Station Steam Condensers Part 1: Convergence Behavior of a Finite- Volume Model," Numerical Heat Transfer, Part B, Vol. 27, pp. 81-102. https://doi.org/10.1080/10407799508914948
  6. Butterworth, D., 1979 April , "The Correlation of Crossflow Pressure Drop Data by Means of the Permeability Concept," AERE-R-9435.
  7. Rhodes, D.B. and Carlucci, L.N., 1983, Predicted and Measured Velocity Distributions in a Model Heat Exchanger, Int. Conference on Numerical Methods in Nuclear Engineering, Chalk River, Ontario, pp. 935-948.
  8. Carlucci, L.N., 1986, "Computation of Flow and Heat Transfer in Power Plant Condensers," Proceedings of the 8th International heat transfer conference, San Francisco, CA, USA.
  9. Bell, B., 2001, "Modeling Shell-and-Tube Condensers with Fluent Using the Porous Medium Approach," Fluent. Inc.
  10. Gnielinski, V., 1976, "New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," International Chemical Engineering, Vol. 16, pp. 359-368.
  11. Fujii, T., Uehara, H., Hirata, K. and Oda, K., 1972, "Heat Transfer and Flow Resistance in Condensation of Low Pressure Steam Flowing Through Tube Banks," International Journal of Heat and Mass Transfer, Vol. 15, pp. 247-260. https://doi.org/10.1016/0017-9310(72)90072-5
  12. Berman, L.D., 1969, "Determining the Mass Transfer Coefficient in Calculations on Condensation of Steam Containing Air," Thermal Engineering, Vol. 16, No. 10, pp.95-99.