• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.032 seconds

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Space-Time Finite Element Analysis of Transient Problem (동적 문제의 공간-시간 유한요소해석)

  • Kim, Chi-Kyung;Lim, Hong-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.201-206
    • /
    • 1993
  • A space-time finite element method was presented for time dependent problem. The method which treat both the space and time unformly were proposed and numerically tested. The weighted residual process was used to formulate a finite element method in a space-time domain based upon continuous Galerkin method. This method leads to a conditional stabie high-order accurate solver.

  • PDF

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model (연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석)

  • 홍남식;허택녕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-115
    • /
    • 2000
  • Numerical model is proposed to estimate dynamic responses of riser with vortex excitation by inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are inspected through the physical interpretation to give the verification and usefulness of the suggested numerical model.

  • PDF

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Numerical Analysis in Electromagnetic Problem Using Wavelet-Galerkin Method (Wavelet-Galerkin 방법을 이용한 전자기장 문제의 수치 해석)

  • Cho, Jung-Kyun;Lim, Sung-Ki;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.174-176
    • /
    • 1997
  • 편미분 방정식의 형태로 나타나는 많은 전자기장 문제들을 유한요소법이나 유한차분법 등의 수치해석적 방법으로 해결하려는 경우 시스템 행렬을 구성하게 된다. 이때 해석영역의 요소수가 많을수록 행렬의 조건수(condition number)는 다항식(polynomial) 증가를 갖게 되며, 이는 풀어야 할 선형시스템에서 반복 연산 과정의 속도를 떨어뜨리는 결과를 야기한다. 이러한 결과를 wavelet을 기저 함수로 쓰게 되면, 더 높은 분해능(resolution)의 해를 유한 요소법이나 유한 차분법에서와 같은 요소 분할 과정이 없이 Mallat 변환이라는 간단한 과정을 통해 구할 수 있으며, 본 논문에서는 Daubechies의 wavelet 함수를 기저 함수로 사용하여 전자기장 문제에 적용함으로서 수치해석에 있어서 wavelet 함수의 적용이 많은 장점을 갖고 있음을 보인다.

  • PDF

Lubrication Performance Analysis of A Low-Speed Dry Gas Seal having An Inner Circular Groove (내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석)

  • Lee An Sung;Kim Jun Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.201-208
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0e+07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting.

  • PDF

Stability Improved Split-step Parabolic Equation Model

  • Kim, Tae-Hyun;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.105-111
    • /
    • 2002
  • The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its numerical accuracy. The wide-angled approximation of the operator is made based on the Pade series expansion, where the branch line rotation scheme can be combined with the original Pade approximation to stabilize its computational performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator. The benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the implemented numerical model.

Thermal postbuckling of imperfect Reissner-Mindlin plates with two free side edges and resting on elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.643-658
    • /
    • 1998
  • A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation. The plate is assumed to be simply supported on its two opposite edges and the two side edges remain free. The initial geometrical imperfection of the plate is taken into account. The formulation are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winker elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical form.

A Study on Analysis of Distributed Parameter Systems via Walsh Series Expansions (월쉬 금수 전개에 의한 분포정수계의 해석에 관한 연구)

  • 안두수;심재선;이명규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.3
    • /
    • pp.95-101
    • /
    • 1986
  • This paper describes two methods for analyzing distributed parameter systems (DPS) via Walsh series expansions. Firstly, a Walsh-Galerkin expansion approach technique (WGA) introduced by S.G. Tzafestas. is considered. The method which is based on Galerkin scheme, is well established by using Walsh series. But then, there are some difficulty in finding the proper basic functions at each systems. Secondly, a double Walsh series approach technique (DWA) is developed. The essential feature of DWA propoesed here is that it reduces the analysis problem of DPS to that of solving a set of linear algebraic equation which is extended in double Walsh series.

  • PDF

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF