Journal of Korean Society of
Coastal and Ocean Engineers
Vol. 12, No. 3, pp. 109~115, September 2000

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model
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Abstract [] Numerical mode! is proposed t© estimate dynamic responses of riser with vortex excitation by
inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model
and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are
inspected through the physical interpretation to give the verification and usefulness of the suggested numerical
medel,
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1. INTRODUCTION

The vibration induced in elastic structures by vortex
shedding is of practical importance because of its poten-
tially destructive effect on pipelings or marine risers. Vor-
tex-induced forces may excite the riser in its normal
modes of transverse vibration. When the vortex shedding
frequency approaches the natural frequency of a marine
riser, the cylinder takes control of the shedding process
causing to be shed at a frequency close to its natural fre-
quencies. This phenomenon is called vortex shedding
“lock-in" or synchronization. Under “lock-in" conditions,
large resonant oscillations occur and lift forces are ampli-
fied due to increased vortex strength and spanwise comre-
lation along the cylinder. This is attributed to a substantial
increase in in-line drag. Large responses in both directions
give rise to oscillatory stresses. If these stresses persist,

significant fatigue damage may occur. The investigations
of the vortex-induced vibration of structures have been
studied continuously and widely up to now since observa-
tions and measurements were made on both rigid (Feng,
1968; Sarpkaya, 1977) and flexible (Ramberg and Griffin,
1974; Every et al., 1982) cylinder vibrating transversely
in uniform cross-flows. Iwan and Blevins (1974) pro-
posed the two dimensional coupled wake oscillator model
which has an advantages as an numerical model. Later,
Blevins (1990) modified the model in order to include
spanwise resonance band for nonuniform flow.

Several works have been done to obtain analytical and
numerical solution. However, the numerical analysis by
self excited oscillator has not quite been done yet. There-
fore, the objective of this study is to propose a numerical
model for the analysis of vortex-induced vibration to give

useful tool. Iwan-Blevin’s model (Blevins, 1990; Iwan
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and Jones, 1987), which is one of the self-excited oscilla-
tor models, is implemented as a vortex shedding model
and Galerkin finite element processes are adopted to solve
a mathematical model.

2. FORMULATION

The riser system can be modeled as a long tubular beam
connecting the drilling platform with the wellhead at the
seabed. A tensioning system is installed on the drilling
platform and applies tension at the top of the riser. This
tension provides part of the support required to keep the
riser tight and prevent buckling or collapse. High pressure
drilling mud is circulated along the annulus between the
riser and the drilling string. It exerts static pressure force,
vertical and torsional frictional forces on the riser. And
also, the source of external forces exerted on the riser are
the ocean currents.

2.1 Equations of Riser Pipe
The nonlinear vector equation of motion for a rod with
circular section {Hong, 1995; Nordgren, 1974) is given by

mF+ (EIr)-[(T,—EIXC) ] -H(F xr') =g, X' =r'-r"

(1)
where prime denotes the differentiation with respect to
undeformed arclength s and dot with respect to time
t El is the flexural rigidity of pipe, H torsional
component of external moment and 7. effective ten-
sion. ¢ is the forcing vector acting on the riser by
external flow and m, is the total mass including
pipe. internal fluid, and added mass.

For nearly vertical risers, introducing a rectangular Car-
tesian coordinate system x; (i=1, 2, 3) with the x; axis ver-
tically upward and then, restricting attention to the riser
whose deformation lies wholly in a single plane and

neglecting nonlinear terms, the vector Eq. (1) reduces to

mdy +(Elx)") —(Tx, )+ Hx," =g, (2
mi,+(Elx,") —(Tx, ) -Hx " =4, (3
mxy T3 =q, “

For most riser problems in intermediate water depth,
longitudinal vibration is unimportant and then, we may
neglect the longitudinal inertia term in Eq. (4). Fur-
ther, it is convenient to include the hydrostatic effects

of intemal and external fluid pressures by defining effec-
tive weight per unit length w and effective tension T, as

w=w YA -1A, 3)
Tn = T+iji_poArJ (6)

where w,=riser weight per unit length y. y.=specific
weight of internal and external fluid, p; p.=internal
and external static pressure of riser, A, A.=internal
and external area of riser, and 7 is actual tension.
Eq. (5) leads to gs=-w. Eq. (6} can then be integrated to

give
T, = TTR—j:) wds or T,= TTB+]:) ws (7

where T7R and T7B are, respectively, the top ten-
sion and the bottom tension.

Thus, the effective tension is independent of the honi-
zontal deflections and then, with no torsion, Egs. (2) and
(3} becomes

mx +(Elx")'—wx)'-Tx,"= ¢, (8)
Mgy + (") —wxy = T,5"= g, 9)

The riser support can be modeled by the linear
translational spring providing the restoring boundary
forces. The internal boundary conditions associated
with Egs. (8) and (9) can be found by modifying
the direction cosines of nonlinear boundary condition
at the top of the rser into 0, O, 1, and are given as

followings:
F=—Kx,
Fo =-Kyxy, (10)

the subscript u indicates the upper end of the riser,
TTR is the tension applied at top of the riser by
the tensioning system and K; K, are spring con-
stants supplied by the restoring boundary forces.

2.2 Vortex Excitation Model

The mathematical model of vortex excited vibration is
presented using the two dimensional coupled wake oscil-
lator model proposed by Blevins (1990) for the Reynolds
number of 10 to 10°, There are many vortex excitation
models such as harmonic model, wake oscillator model,
and etc. Ameong these models, Iwan-Blevin's model has an

advantage as a numerical model. This model has a nature
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of self excited vortex shedding which means that the fluid
behavior may be modeled by a simple, nonlinear, and self-
excited oscillator. Attention is confined to plane vibrations
(xx=0) transverse to a steady current in direction x;. In-line
vibration is treated in the usual way and no coupling is
considered in this model.

First, a so-called hidden flow vanable w is defined as a
fluid motion transverse to a steady current and it, in turn,
produces transverse force to cylinder. This transverse
force, which induces the motion of the cylinder, is a forc-
ing component in oscillator equation. The net force per
unit pipe length on cylinder is evaluated using the
momentum equation for the control volume containing
cylinder and is given by

g = aziwaoUc(w_i-l) (1 1)

and the fluid oscillator equation is

wHow=(a, -a YUw/D,— a;w A UD)

+a, Ux,/D, (12)

where @, is the vortex shedding frequency given by
w@=25U./D, and Stroudal number § 1s taken as 0.20.
The constants a; (i=4) and ;' (i=0,1,2) are determin-
ed on the basis of the results of various vortex ex-
periments for suberitical Reynolds numbers (Blevins,
1990). Based on the results of various vortex exper-
iments for subcritical Reynolds numbers, Iwan and
Blevins(1974) took a,'=0.916, &'=0.916,, a,;=0.416,
as=0.792, a,=0.38. Later, Blevins (1990) considered
the spanwise coupling along the riser because por-
tions of the riser span are not in resonance for nonuni-
form flow. In order to apply the model to nonuniform
flow, the span of the riser is divided into segments
that are within the resonance band and the remander,
which in outside the resonance band.

The evaluation of the net force on cylinder under the
consideration of the spanwise coupling is obtained from
the modification of Eq. (11) and is given by

- ] .
1= a4waoUc(W_xl )p(x])_iwaaUcCDxl(l _P(x3))
(13)

where parameter p(xz) defines the spanwise region of
the resonance band as zerc or one.
Since the model derived by Blevin and Iwan is based on

the assumption of small amplitude, this model is applied to
the approximated equation of motion (8}, which gives

mE +E")Y - wx' - Tox "= a,p,. D, U 00— 1)p(x,)

Lo.0,U.Cpn (1 pl)) (14)
From the above equation, we can recognize that the
riser system may respond resonantly to vortex shed-
ding along the part of its span in the lock-in band
and the system oscillation will be damped by the
external fluid out of that part.

3. NUMERICAL SOLUTION

3.1 Numerical Model

Transverse vibration and in-line dynamic response of
current-vortex model are estimated using finite element
method in which the Galerkin finite element procedure is
applied.

The mathematical model of current induced vibration
can be obtained by combining Eqs. (9), (12) and (14):

m &+ Ex") —wx) =T = a,p, DU (W4 )p(xs)

1
_Epn’DuUcCDxl(] _P(xj)) (15)
Wt oow = (a,'—a, Y w/D,— ayw A U.D,)

+a,'tUx,/D, (16)
%+ (B, Y —wity = Tty = gy (17)

These three equations represent the transverse vor-
tex-induced vibration, the fluid oscillator equation about
the hidden flow variable w, and the riser vibration in
the current direction respectively. The forcing term q;
in the right side of Eq. (17) can be derived by taking

only the drag term due to current and given as,
1 . .
q: = —iprDD‘,fxz— Ulix,-U,) (18)

The weak form of the poveming equations are pro-
duced In multiplying the residual by a sufficiently
smooth test function, integrating the product by parts,
and equating the result to zero. And then, implementa-
tion of Hermite polynomials as basis functions (N, N)
yields the dynamic equilibrium equations constructed in
terms of the unknown deformations at node /, j of a
elememt. For the construction of the matrix equation,
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the usual processes are applied and the resulting matrix

equations are:

[My1{, (0} + Gl (0} + T+ Kl x (0}

=[Fyl{w, ()} (19)
[3,1{ (0} + [Cal {0} } + R w0}

=[FyHa,0 -{f (D)} (20)
(M1 5,00 }+ Tyt Kl {0} = U0} @1

wher
x5 Xo=deformation at j-th node, w=hidden flow vari-
able at j-th node

M= M;= [, mNN, dx,

. 1
Cy=ly, | PP U (35) =30, D, Coll=plx) |
NN,dx

Ty=Ty=[o, TN/N, dx,

Kyj=Ky=[o ELN;N; dxy

Fif = J-QE a4waoUrp(x3)NiA[jdx3

P 1 . .

f; = JQ( 75 prDDal'xﬂl_ U(l(xlh_ Uc)lvjdxl

M=o NN dxs . Cy =g, (a)'~a"WU/D NN, dx,

Ry= [y wiNN; dxy, Fy=|, a/(U/D)NN; dx,

}:" = jn, [a?_'/(Ur./Do)]sz dx3

4 4

Xoy(X3, 1) = .}_:lxz,-(r)N‘-(x3) , Wylxa, ) = ;lx,-(t)Nr-(JQ)
where Ni, N=a set of unique local cubic Hermite
polynomial shape functions as an interpolation func-

tion Having calculated the matrices and equations
describing our approximation over each finite element,

the next step is to assemble the equations describing
the approximation on the entire mesh by adding up the
contributions to these equations furnished by each ele-
ment. This assembling procedure is omitted because it
is well known and referenced in several books and
papers.

Eqgs. (19) and (20) represent the self excited oscillation.
These harmonic responses due to vortex shedding are cal-
culated by forcing the riser with an imposed initial force.
The vortex driven oscillation usually reaches to a steady
state in about 10-15 cycles for top hinged case. Also, the
slight modulation in amplitude, which results from a third
power term in the hidden flow variable w on the right side
of fluid oscillator equation, has been detected.

3.2 Numerical Solation

In the above section, the matrix equation of equilibrium
for current-vortex model (Eqs. (19)-(22)} is derived. As
discussed in the section 3.1, Egs. (19) and (20) represent
the self-excited oscillator equations, while Eq. (21) pre-
sents inline vibration due to current. From the inspection
of coefficient matrices and vectors in Eq. (22}, it may be
recognized that the drag force in inline vibration equation
and the fluid force in fluid oscillator equation have some
nonlinear terms. In other words, there is no highly nonlin-
ear terms in the equation to be solved. Therefore simple
iteration can be applied for the convergence of solution.
Thus, the application of Newmark method combined with
the simple iteration is enough to solve the system of equa-
tions. Time step of At=0.05 sec is used for numerical inte-
gration.. Using the method mentioned above, a finite
element code, which is called CODEYV, is developed.

For the verification of CODEY, the numerical results
are inspected through the physical interpretation with the

Table 1. Design properties and data for a drilling riser system for use in the northern North Sea.

Qutside diameter

D=0.61 m with 16 mm wall thickness

Constant of elasticity

Sectional moment of inertia
Riser length

Riser mass

Bottom tension

Effective weight per unit length
Mean Tension

Density of drilling mud

Density of sea water

E=2.1X106 kg/em?

1=131018 cm?

L=152 m

m=10 kg/em (include mass of drilling mud and sea water)
TTB=1200 iN

w=3.86 kN/m

T=1453 kN

pr=1.36 vm?

p=1.036 v/
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generally expected trends. The transverse vibration due to
vortex shedding is estimated and the effect on riser vibra-
tion is investigated. The example data, which is a typical
drilling riser system used in the northern North sea and
repeated from Chen (1990), is given in Table 1. In addi-
tion, the mass coefficient Cy=2.0, added mass coefficient
Ca=Cy-1, and the drag coefficient Cp=0.8 are used.

The first concern is that the deflected shape of the riser
should be symmetrical when the riser system with the
exclusion of internal tension is subject to a uniform cur-
rent. The numericat results show that nodal displacements
and rotations are exactly symmetrical or skew-symmetri-
cal with respect to middle node, that is, the deflected
shapes are exactly symmetrical when there are no internal
ension,

Next, the response of riser with the inclusion of internal
tension is examined. Fig. ! presents maximum transverse
displacement versus current velocity. Since the transverse
vibrations due to current are controlled by the oscillating
vortex generated around the riser, they must have resonant
bands near the critical current velocity in which the vortex
shedding frequency accords with the system frequency.
For instance, the first system frequency is already known
from Table 2 estimated by Hong (1996) using semi ana-

Maximum vorex-induced displacement {m}

o
g
o
L L L L L L D

VIR S T TR AT T ST S N N T N |
0o 02 04 06 08 1.0 1.2 14 1.6 1.8

Current velocity (mi/s}

Fig. 1. Maximum vortex-induced displacement in transverse
direction to uniform inline current.

113

lytical method. The vortex shedding frequency can be also
calculated from Eq. (12). Taking Strouhal number § as
0.20, the critical velocity can be obtained from the follow-
ing equation:

o, = 21Su, /D, = ,
®, = 21(0.20), /[(2.0)(0.3048)] = 0.81701

u, =040 mss (23)

This critical velocity is consistent with the velocity cor-
responding to the first peak as shown in Fig. 1. In the
same manner, the critical velocities for second and third
peak in Fig. | are compared with the values calculated
using Eq. (23) and found to be consistent with each other.
While the loading due to vortex shedding in the transverse
direction oscillates well to induce harmonic riser motion,
the constant load due to current in inline direction causes
a steady static response.. This inline displacement simply
becomes larger as the current velocity increases as shown
in Fig. 2. Fig. 3 plots the time history of the transverse
displacement at the middle point of the riser. In this fig-
ure, three different current velocities, over, just at and
below first critical velocity are chosen to demonstrate the
magnification in amplitude of oscillating displacement
resulting from the current velocity that generates resonant
vorticies. The middle figure corresponds to the case of
resonance. As discussed already, all three figures show
harmonically oscillating ones due to the vortex shedding,
These harmonic responses due to vortex shedding are cal-
culated by forcing the riser with imposed initial force. The
vortex driven oscillation usually reaches to steady state in
about 10-15 cycles for top-hinged case. Also, the slight
modulation in amplitude can be detected from the figure.
This modulation results from a third power term in the
hidden flow variable w on the right side of the fluid oscil-
lator Eq. (12).

This can be proved from the fact that this modulation
would disappear if the third power term is excluded from
the fluid oscillator equation. Fig. 4 shows the time history
of inline displacement at the middle of the riser. As
expected, the displacement in current direction approa-

Table 2. System frequencies of the ist to 10th modes for a drilling riser system.

Mode i 1 2 3

4

5 6 7 8 9 10

System Frequency {rad/s) 0.81701

1.80326 3.0B550 4.73421 6.78562 9.25782 12.1601

154975 19.2727 23.4889
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Fig. 3. Transverse displacement history due to inline current at
the middle node of riser.

ches to a steady static state after a few cyclic fluctuations.
Fig. 5 shows the time-dependent trajectories of displace-

system seems to behave as expected from physical
point of view.

4. CONCLUSIONS AND FURTHER STUDY

A computational model for vortex induced vibrations
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