• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.031 seconds

A STABILITY RESULT FOR THE COMPRESSIBLE STOKES EQUATIONS USING DISCONTINUOUS PRESSURE

  • Kweon, Jae-Ryong
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.159-171
    • /
    • 1999
  • We formulate and study a finite element method for a linearized steady state, compressible, viscous Navier-Stokes equations in 2D, based on the discontinuous Galerkin method. Dislike the standard discontinuous galerkin method, we do not assume that the triangle sides be bounded away from the characteristic direction. the unique stability follows from the inf-sup condition established on the finite dimensional spaces for the (incompressible) Stokes problem. An error analysis having a jump discontinuity for pressure is shown.

  • PDF

NUMERICAL METHODS FOR A STIFF PROBLEM ARISING FROM POPULATION DYNAMICS

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.161-176
    • /
    • 2005
  • We consider a model of population dynamics whose mortality function is unbounded. We note that the regularity of the solution depends on the growth rate of the mortality near the maximum age. We propose Gauss-Legendre methods along the characteristics to approximate the solution when the solution is smooth enough. It is proven that the scheme is convergent at fourth-order rate in the maximum norm. We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough. The stability of the method is discussed. Several numerical examples are presented.

  • PDF

A NEW MIXED FINITE ELEMENT METHOD FOR BURGERS' EQUATION

  • Pany Ambit Kumar;Nataraj Neela;Singh Sangita
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.43-55
    • /
    • 2007
  • In this paper, an $H^1-Galerkin$ mixed finite element method is used to approximate the solution as well as the flux of Burgers' equation. Error estimates have been derived. The results of the numerical experiment show the efficacy of the mixed method and justifies the theoretical results obtained in the paper.

Element Free Galerkin Method applying Penalty Function Method

  • Choi, Yoo Jin;Kim, Seung Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.1-34
    • /
    • 1997
  • In this study, various available meshless methods are briefly reviewed and the connection among them is investigated. The objective of meshless methods is to eliminate some difficulties which are originated from reliance on a mesh by constructing the approximation entirely in terms of nodes. Especially, focusing on Element Free Galerkin Method(EFGM) based on moving least square interpolants(MLSI), a new implementation is developed based on a variational principle with penalty function method were used to enforce the essential boundary condition. In addition, the weighted orthogonal basis functions are constructed to overcome disadvantage of MLSI.

  • PDF

Finite Element Solution of Ordinary Differential Equation by the Discontinuous Galerkin Method (불연속 갤러킨 방법에 의한 상미분방정식의 유한요소해석)

  • 김지경
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.83-88
    • /
    • 1993
  • A time-discontinuous Galerkin method based upon using a finite element formulation in time has evolved. This method, working from the differential equation viewpoint, is different from those which have been generally used. They admit discontinuities with respect to the time variable at each time step. In particular, the elements can be chosen arbitrarily at each time step with no connection with the elements corresponding to the previous step. Interpolation functions and weighting functions are taken to be discontinuous across inter-element boundaries. These methods lead to a unconditional stable higher-order accurate ordinary differential equation solver.

  • PDF

AGE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE LOTKA-MCKENDRICK EQUATION

  • Kim, Mi-Young;Selenge, T.S.
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.569-580
    • /
    • 2003
  • The Lotka-McKendrick equation which describes the evolution of a single population under the phenomenological conditions is developed from the well-known Malthus’model. In this paper, we introduce the Lotka-McKendrick equation for the description of the dynamics of a population. We apply a discontinuous Galerkin finite element method in age-time domain to approximate the solution of the system. We provide some numerical results. It is experimentally shown that, when the mortality function is bounded, the scheme converges at the rate of $h^2$ in the case of piecewise linear polynomial space. It is also shown that the scheme converges at the rate of $h^{3/2}$ when the mortality function is unbounded.

Crack Identification of Euler-Bernoulli Beam Using the Strain Energy Method (에너지 방법을 이용한 Euler-Bernoulli 보의 손상 규명)

  • Huh, Young-Cheol;Kim, Jae-Kwan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.396-400
    • /
    • 2006
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could he obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

  • PDF

DECAY CHARACTERISTICS OF THE HAT INTERPOLATION WAVELET COEFFICIENTS IN THE TWO-DIMENSIONAL MULTIRESOLUTION REPRESENTATION

  • KWON KIWOON;KIM YOON YOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.305-334
    • /
    • 2005
  • The objective of this study is to analyze the decay characteristics of the hat interpolation wavelet coefficients of some smooth functions defined in a two-dimensional space. The motivation of this research is to establish some fundamental mathematical foundations needed in justifying the adaptive multiresolution analysis of the hat-interpolation wavelet-Galerkin method. Though the hat-interpolation wavelet-Galerkin method has been successful in some classes of problems, no complete error analysis has been given yet. As an effort towards this direction, we give estimates on the decaying ratios of the wavelet coefficients at children interpolation points to the wavelet coefficient at the parent interpolation point. We also give an estimate for the difference between non-adaptively and adaptively interpolated representations.

[ $H_{\infty}$ ] Control for a Class of Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.501-507
    • /
    • 2007
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ control of a class of singularly perturbed nonlinear systems with an exogenous disturbance, using the successive Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of singular perturbation. Two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.