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H., Control for a Class of Singularly Perturbed Nonlinear Systems
via Successive Galerkin Approximation

Young-Joong Kim and Myo-Taeg Lim*

Abstract: This paper presents a new algorithm for the closed-loop H., control of a class of
singularly perturbed nonlinear systems with an exogenous disturbance, using the successive
Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into
two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of
singular perturbation. Two H,, control laws are obtained to each subsystem by using the SGA
method. The composite control law that consists of two H., control laws of each subsystem is
designed. One of the purposes of this paper is to design the closed-loop H. composite control
law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce
the computational complexity when the SGA method is applied to the high order systems.

Keywords: Composite control, H, control, nonlinear system, singular perturbation, successive

Galerkin approximation.

1. INTRODUCTION

Many real physical systems are described by
singularly perturbed nonlinear systems. Singularly
perturbed systems include two or multi time scales
and have been studied by many researchers [1-3]. In
the class of optimal control [4], design of the control
law for the singularly perturbed systems has ill-
defined numerical problems [2,3]. To avoid these
problems, the full order system is decomposed into
reduced slow and fast subsystems, and then optimal
control laws are designed for each subsystem. Thus,
the near-optimal composite control law consists of
two optimal sub-control laws.

Recently, robust control is issued and developed by
many researchers for linear systems [5-7]. But in the
class of nonlinear systems, because conditions for the
solvability of the robust H,, control design problem

are hard, still there are a lot of problems to be
developed [8,9]. For nonlinear systems, the H

optimal control problem is reduced to the solution of
the Hamilton-Jacobi-Isaac (HJI) equation, which is a
nonlinear partial differential equation (PDE) [10].
These equations may be solved analytically for some,
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but not for all cases of interest. On the other hand, the
solution of a nonlinear PDE is extremely difficult to
solve and so some researchers have searched for
methods of obtaining its approximate solution. In this
paper, the approximated solutions are obtained via the
SGA method developed in [11,12].

However, the SGA method has the difficulty that
the complexity of computations increases according to
the system order. Therefore, the full order system is
decomposed into the reduced order subsystems via

singular perturbation theory and then two robust H,
sub-control laws are designed for the corresponding
slow and fast nonlinear systems using the SGA
method, respectively. Then, the obtained closed-loop
H_, composite control law is represented by a linear
combination of the slow and fast variables. The
purpose of this paper is to design the closed-loop H,,
composite control laws for singularly perturbed
nonlinear systems using the SGA method. In order to
obtain the closed-loop H,, control law for n-th order
systems using the SGA method, one must compute 7-
tuple integrals, and the number of computations
increases according to n. Singularly perturbed systems
can be decomposed into two subsystems, and we can
obtain two sub-control laws for each subsystem
through the SGA method. Therefore, 7, and no-tuple
integrals are computed and the number of
computations are decreased, where n=n;+n,. Thus,
the near-optimal H_, composite control law consists

of two optimal H,, sub-control laws.

The contents of this paper are as follows. In Section
2, singularly perturbed nonlinear systems with respect
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to performance criteria are studied. We define the
Generalized-Hamilton-Jacobi-Isaac (GHJII) equations
for each subsystem. The solutions of GHJI equations
are obtained using the SGA method and the composite
H, control law is designed. We present the new
algorithm for H, composite control of singularly
perturbed nonlinear systems using the SGA method.
Section 3 gives our conclusion.

2. MAIN RESULTS

In this section, the H, sub-control laws are
designed for each subsystem using the SGA method,
“and the closed-loop H., composite control law consists
of two optimal control laws for each subsystem.

2.1. H, composite control for singularly perturbed
nonlinear systems

The infinite-time H,, control problem considers a class

of singularly perturbed nonlinear systems described

by the following differential equations:

a = fi(a)+ F(a)B + g (a)u+h(@)w, (1
&= frla)+ F(@)pB+g@u+h(Bao,  (2)
(@)
z=|L(@)p |,
Du 3

alty)=a®, Blty)=p°

with respect to the performance criterion:
®f T 2. T
J= (z -7 a))dt, (4)

where aeR™ and BeR™ are state variables,

ucR™ is a control input, @ € RP is an exogenous
disturbance, & is a small positive parameter, and ¥

is a positive design parameter. We assume that
14 145 ny Xn X

fieR", £, eR?, ReRM™2, FLeR?™, g e

R gy e R By e RP and hy e R"™P are

Lipschitz continuous on a compact set Q> B(0),

. r o7
and Bis a ball around the states [a p ] . We

also assume that f(%) =0 and f2(tp)=0. In
addition, for simplification of development we assume

that 7, (f)=0.
The performance criterion (4) can be written in the
equivalent form:

J= j:(zT 1+ 7T LB +u" D' Du—y20” a)) dr, (5)

where y is a positive design parameter. In the

following, we solve slow and fast robust optimal
control problems and combine their solutions to form
a composite control:

U, =ty +1iy, (6)

where u: and u} are the optimal control for slow

and fast time scale problems, respectively. A subscript
s denotes slow time scale and f denotes fast time scale.
The near-optimality of the composite control law (6)
is stated in the following theorem.

Theorem 1:
w () =u,(+0(E), 21, (7
aty=o,)+0(e), t=t, (8)

B =B, +p,O)+0(e), 121 ©

Proof: The proof of this theorem can be drawn
from [3]. O
Let us assume that the open-loop system (1)-(2) is a
standard singularly perturbed system for every

u e B(u)c R™, thatis, the equation

By =—F5 (a){ frlay) + gy oy s} (10)

has a unique solution.
The slow time scale problem of order n is

defined by eliminating B, and uy from (1)-(3)

and (5) using (6)-(10). Then the resulting slow time
scale problem becomes optimal control of the slow
subsystem

as = folag) + gs(au,,  ay(i)=a (1)

with respect to the performance criterion:
Ty = [ {lo@y) + 2L (e, +l Dy u f, (12)

where
fo=f-FRE fa,
g =g -FF g,
=11+ ff F; L LF; fy,
L= fi iU LF; gy,
D,=D"D+g i ITLF;'g,.
From robust H, control theory [5,6], it is well

known that if J:(as) is a unique positive-definite
solution of the HJI equation:

« T w« I *
aJ 17 7 o op. O]
[ +—= - D —y Vv — =0
s aas fs 4aas (gs s 85 Y 171 . aas

(13)
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with the boundary condition:
J.(0)=0. (14)

Then the H,, control of the slow time scale problem is
given by

. 1 7 dJ,
U :—DSI(LE +Eg£ aas J (15)
s

and the exogenous disturbance of the worst case is
given by

-2 *
o :th%, (16)

s 2 ox

N

where
fi = 1o~ 8,07 'Ly,
I,=lp-L.D;'IL.
The fast time scale problem of order »n, is defined

by freezing the slow variable a; and shifting the
equilibrium of the fast subsystem to the origin.
By = Fy(a) By + gr(a,)uy,
B ()= + F @) £,@®) + g2 @)y (),
(17)

where B, =f—f;. The performance criterion of

the fast time scale problem is given by
o
Jr= .[0 {’B}LT(aS)L(as)ﬂf +u§DTDuf}dt, (18)

where «a, € B is fixed parameter.

If J; (By) isaunique positive-definite solution of

the HJI equation:
* T

oJ
ﬂ;LTLﬂf + ——L FZﬂf
aﬁf

« T * (19)
—i-a—é- 07Dy e =0
with the boundary condition:
JH(0)=0. (20)

Then the H,, control of the fast time scale problem is
given by
17 1 ;
u,=——(D" D) —. @2n
r ( g
2 OBy
It is appropriate to consider the following

decomposition of feedback controls where u: =
Gy(ay) and u;:G2(,Bf) are separately designed

for the slow system (11) and fast system (17). A
composite control (6) for the full system (1)-(3) might
then plausibly be taking as

u. = Golag) + G, (ﬂf)- 22)
However, a realizable composite control requires that
the system states a; and B, be expressed in terms
of the actual system states o and f. This can be
achieved by replacing o, by a and B, by S
so that

u, = G(a) +G(p), (23)
where

G| = Gy + Gy F5 ' g,Gy + Gy F5 ' £y

2.2. Generalized-Hamilton-Jacobi-Isaac equation
In order to obtain the H, composite control law

u,, we need to find the solutions, 6J;/ Oa, and

ol
aJ; 198, using the SGA method.

Assumption 1: Q is a compact set of R”, and
all states are bounded on [to,t f] xQ. 0

Under Assumption 1, we can define the GHII
equation for singular perturbed nonlinear systems
which is defined in the following.

Definition 1: If initial control laws «® :R™ x Q;
- R"and ugp) R xQ o R"™ are admissible, and
functions J{ : R xQ, >R and JP :R2 xQ;

— R satisfy the following GHJI equations, written
by GHJI (Jgi),ugi)) =0, namely

~T N T .
) 1asih RIS SAY-)
- fi+—= D -y hhy £
2a, 74 oa (.08l =i ) o,
NYA .
1asf) EYTSP R )
—-— D -y “hh 5 +1. =0
) aas (gs s 8 ~V 17 ) aas s
(24)
with boundary condition:
JO©) =0, (25)
then i-th slow control law is
~ - 1 "
u =-D;! (Lf rog |, (26)
s
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and GHJI (J}i) ,u?)) =0, namely

AT T .
o paséh aJih
L Fpr+— / gz(DTD)_lgg—f—
0By 4 0py OBy
o’ (i)
10J; Tt 15 T,T
———— &(D'D) g ——+BL LB, =0
2 3B, op, T
@7
with boundary condition:
JPO=0, (28)
then i-th fast control law is
1 (i-1)
6] Tyy-1,T 7S
uy =-——(D"D) gy ———> 29
f
2 OBy
where i is an iteration number. O
2.3. Galerkin projections of the Generalized-

Hamilton-Jacobi-Isaac equations
Given an initial control u§°), we compute an

approximation to its cost ng,) =c§?\2T @y, where

cg(])\,) is the solution of Galerkin approximation of

GHIB equation (24), i.e.,
4D + 50 =0, (30)
where

40 = (VO £, Dy >Qs

+ <VchN (g + o', @y > o

s

0
B = (1, Doy ),
0 0
+ <u§°>TDsu§ )~ 200D 0y >Q

s

We can compute the updated control law and the
exogenous disturbance which are based on the

approximated solution, J, s(]';l).

0 __Lpa r@/ 1 roar o
ugl) =—EDS 8s asa Z—EDS 85 V(I)SNc.(S‘;V )’

s

2 G-1) -2

W _¥  rds v TomT -1

o’ = h —=— =2 VD e .
> M a, | VO ey

Then we can obtain the approximation

JG = oy, 31)

3.

where cg’]\), is the solution of

AP 1 b =0, (32)
where
' 1 a7
A_gl) = <Vq)sts ’CDSN >Qs - E<VCDSN (gS‘DS &5

) i
. )V<I>§NC§'ND,®SN >Q ,

‘ 1/ G-nr -1,T
bgl) = <lsaq)SN >Qs +Z<c.(S‘IN ) Vq)sN(gSL)S s

L )V(D?Nc(sxl),@w% ,

s

and i is an iteration number.
)

Similarly, given an initial control u 7> we can
compute an approximation to its cost J;?v) =

c(f%TCD ™o where cgg\; is the solution of Galerkin

approximation of GHIB equation for the fast-time
case. A detailed description of Galerkin approximation
can be founded in [12-15].

2.4. A new SGA method for H,, composite control

The following algorithm shows that the H,
composite control can be designed by two closed-loop
control laws of fast-and slow-subsystems using the
SGA method for singularly perturbed nonlinear
systems.

Algorithm 1:
Initial Step
Compute

A§0) = <VchNfs ’(DsN >Qs

+ <V(DSN (gsu§0) + hw(O) )r (DSN >Q >

H

b = {1 Py ),

+ <u§O)TDsu§0) - 720)(0)Tw(0):d)s]\’ >Q s

S

and
AP = <VCDfNF2,Bf,<DfN>Qf
+ <V<D PP fN>Qf ,
O = <ﬂ}LTLﬁf,®ﬂv>Qf
+ <u§9)TDTDu§9),cD fN>Qf :

Find cg?\? and cﬁgg satisfying the following linear
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equations:
AR + 5 =0,
AP + 5P =0,
Set i=1.

Tterative Step
Improved controllers are given by

(i 1 4 ToT (-
ua(";\)f =_5Ds 8s VCDSNCSIV )’

j l Tl TomT (-1
u%z—E(D Dy g7 Valyeth.

Compute
j 1 a7
AAEI) = <Vq)st:v ’(DSN >QS - _2_<V®SN (gst 8s

—y i WL, Dy > 0.

' 1/ G-pr a7
b§l) = <ls’q)sN>QS +Z<c§tN ) V(DSN (gst &

— 2 Wl D oy >Q ,

and
AP = (Vfbﬂszﬂf’q’MQf
_%<VCD W& (D' DY gy Vol @ >g .’
b ={BF L L5, @ >Qf
N i <c(zj'N—1)Tvq) e (DTDY gl V@?Nc(fl;l)»q)ﬂ\’>

Find cglg, and c(f"]z, satisfying the following linear
equations:

ADD + b =0,

AP, b = 0.

Set i=i+1.
Final Step
The realizable H,, composite control law is

_ 1 1 -
Ue :_Dsl[[‘z +5g§Gsaj_E(DTD) lgng
- - - 1
X|:ﬂ+F2 1f2 _F2 ngDsl(Lz +'2—gZGsa)j|’
where VCDSTNcSN=GsaS and Cl)zvcﬂ\/:Gf/i’f. O

The following theorem demonstrates that the
approximate H, composite control law, 1w,

Qy

designed by the proposed algorithm, converges to the
H,, optimal control law, u.

Theorem 2: For any small positive constant o,
we can choose N for a sufficiently large i to
satisfy that:
*_ 0

u —uyl<o. (33)

Proof: It was proved that u" converges to Uy
pointwise on Q for finite Nin [11], where uy is
a control law designed using the SGA. It implies that
for a sufficiently large i, we can choose N

0]

satisfying (lu, —u y

|< 6, where u, is the composite

control law obtained by the reduced order scheme for
singularly perturbed nonlinear systems and & is a
small positive constant. By the help of singular

perturbation theory, uc=u*+0(g). This implies
that for any small positive constant o, we can
choose N for a sufficiently large i satisfying (33). O

3. ANUMERICAL EXAMPLE

Now, we apply the proposed algorithm to a
numerical example. Consider the fifth-order numerical
example which is the standard singularly perturbed
nonlinear system (1)-(3). The states variables are
a=[x x x3]T and B =[x; x5 ]T,and the control
variable is u=[u uz]T. The problem matrices
have the following values:

0.04611x
fi(a) = —2.149x1 —X1X3 |5
Xj Xy — 2146X3

[ 0.146x, +0.068x,x3
frle)= ;
_—0.068x1X2 + 0.146X3
[-16.6x; 16.6x,
F(a)=| 0.146 0 |,
| 0 0.146
—-0.00225 0
F2 (a) = H
0 ~0.00225

g(@)=0, gy(a)=0.03991,,

hl(a)=[1 0 o]T, £ =0.00262.

In this example, we assume that the exogenous
disturbance @ =130sin(1487z¢). The simulation results

are presented in Figs. 1-6 with initial states

xo=[10 —0.07 0.04 15 47]". The dashed lines
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Fig. 1. Trajectories of x;.
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Fig. 1. Trajectories of x,.
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Fig. 3. Trajectories of x;.

(- -) are the trajectories obtained from the full-order
SGA method and the sold lines (—) are the

trajectories obtained from the proposed algorithm. Fig.

6 indicates that the performance criterion trajectory of
the proposed algorithm is better than that of the full-

T
— - full-odar SGA
-— reduced-oder SGA

Magnitude

L L
[ 0.05 48] 0.15 0.2 0.2 03
Time [sec]

Fig. 4. Trajectories of x,.

50 u T T T
— - full-oder SGA
—— reducad-oder SGA

Magnitude

L s L L .
0.05 0.1 0.15 02 025 03
Time {sec)

Fig. 5. Trajectories of xs.

8 T T T T
— - full-oder SGA
—— reduczd-oder SGA

7F 4

W S AR

Magnitude
o
———
L

Time [sec]

Fig. 6. Trajectories of the performance criterion.

order SGA method, because errors of the full-order
SGA method are greater than those of the proposed
algorithm. In the full-order SGA method, ten-

dimensional basis @, = {xlz ,xlxz,xﬁ,x2x3,x32 , X3Xy,
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xf ,x4x5,x52,x1x5} are used and five-dimensional

10x(1+10+100)=1110 times are
performed. However, in the proposed algorithm, we

integrals of

can use only six-dimensional basis @4 = {x12,
xlxz,x%,x2x3,x32,x1x3} computing three-dimensional
integrals of 6x(1+6+36)=248 times for slow-

time scale subsystems, and two-dimensional integrals
of 3x(1+3+9)=39 times based on three-

dimensional basis @5 :{xf ,x4x5,x52 } for fast-time

scale subsystems in parallel. Therefore, the
computational complexity is greatly reduced.

4. CONCLUSION

In this paper, we have presented the closed-loop H.
composite control scheme for a class of singularly
perturbed nonlinear systems using the SGA method.
The difficulty of the SGA method is a computational
complexity, but in the proposed algorithm, n-tuple
integrals are reduced to ;- and ny-tuple integrals in
parallel. Moreover, the computational complexity
according to n state variables is decreased to #; and »;,
state variables. The presented simulation results show
that the performance of the proposed algorithm is
better than those of the full order SGA method.
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