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AGE-TIME DISCONTINUOUS GALERKIN METHOD
FOR THE LOTKA-MCKENDRICK EQUATION

Mir-YounGg KiM AND T'S. SELENGE

ABSTRACT. The Lotka-McKendrick equation which describes the
evolution of a single population under the phenomenological con-
ditions is developed from the well-known Malthus’ model. In this
paper, we introduce the Lotka-McKendrick equation for the descrip-
tion of the dynamics of a population. We apply a discontinuous
Galerkin finite element method in age-time domain to approximate
the solution of the system. We provide some numerical results. It is
experimentally shown that, when the mortality function is bounded,
the scheme converges at the rate of h? in the case of piecewise linear
polynomial space. It is also shown that the scheme converges at the
rate of h%/? when the mortality function is unbounded.

1. The Lotka-McKendrick equation

The Lotka-McKendrick model is a strict analogue of the Malthus’
model. We consider a single population living isolated in an invariant
habitat. We assume that all of its individuals are perfectly equal to their
properties but not for their age. In particular, we assume that there are
no sex differences. According to this setting, fertility and mortality are
intrinsic parameters of the population growth and do not depend on
time, nor on the population size. They are functions of age only. The
evolution of the population is then described by its age density function
at time t:

u(a, t), a€0,a4), t=>0.
Here a4 is the maximum age which may reach an individual of the pop-
ulation and we assume a; < +co. Thus the integral [ u(a,t)da gives
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the number of individuals at time ¢ with age in the interval [a;, ag].
Age specific fertility S(a) can be defined as the number of newborns in
one time unit coming from a single individual whose age is a. Thus
f *2 B(a)u(a, t)da gives the number of newborns in one time unit coming
from individuals with age in [a1, as]. The age specific mortality p(a) is
the death rate of people having age a. The Lotka-McKendrick system
is thus given by the following system:

ut(a,t) + ug(a, t) + pla)ul(a,t) =0, 0<a<a;, t>0,

(1.1) u(0,t) = / Bla)u(a,t)da, t>0,
u(a,0) = up(a ), 0<a<ay.

Here ug(a) is the initial age distribution. In order for the system to
be biologically meaningful and/or also for the mathematical treatment,
we assume that the basic functions ((-) and u(-) satisfy the following
assumptions:

B(-) is nonnegative and belongs to L*°(0,a4),
u(-) is nonnegative and belongs to Li.(0,at),

(1.2) /Oat 4(o)do = oo,

ug € Ll(O,af), ug(a) >0, a € [0,a4].

Condition (1.2) is necessary for the survival probability II(a) to vanish
at the maximum age a; < +o0. Here II(a) is given by

M(a) = e~ Jo oo 4 ¢ [0, a4]

which means the probability for an individual to survive to age a. Thus
the mortality function p typically blows up near the maximum age at.
In the next section, we consider a discontinuous Galerkin finite element
method to approximate the solution of the system (1.1). Here we note
that, since the mortality function y is unbounded, most numerical meth-
ods would not guarantee the optimal convergence rates and some meth-
ods would not even converge [6].

2. Discontinuous Galerkin finite element method

In this section we introduce in detail the discontinuous Galerkin finite
element method to approximate the solution of a linear hyperbolic prob-
lem. We then apply the discontinuous Galerkin finite element method to
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the Lotka-McKendrick system (1.1). Problems with mainly hyperbolic
character such as convection-diffusion problems with small or vanish-
ing diffusion typically occur in fluid mechanics, gas dynamics, or wave
propagation. In contrast to the case of elliptic and parabolic problems,
standard applications of the finite element method to hyperbolic prob-
lems frequently do not give reasonable results. More precisely, it was
observed that standard finite element method for hyperbolic problem
does not work well in cases where the exact solution is not smooth. If
the exact solution has a jump discontinuity, the finite element solution
will in general exhibit large spurious oscillations even from the jump
and will then not be close to the exact solution anywhere. This is of
particular concern since in many interesting hyperbolic equations, the
exact solution is not smooth. Only recently it has been possible to
overcome these difficulties and construct modified non-standard finite
element methods for hyperbolic problems with satisfactory convergence
properties.

In this section, we first introduce the discontinuous Galerkin finite
element method to a linear hyperbolic equation. Let € be a bounded
convex polygonal domain in R? with boundary T and let v = (y1,72)
be a constant vector with |y| := /7§ + ¥4 = 1. We shall consider the
following boundary value problem:

Uy t+u=f in Q,

(2.1) u=g¢ on I'_,

where I'_ is the inflow boundary defined by
. ={zel:n(z) v<0}.

Here n(x) denotes the outward unit normal to I' at the point z € T,
and vy = - Vv is the derivative in the y—direction. To introduce the
discontinuous Galerkin finite element method let us first introduce some
notations. Let 75, be an admissible triangulation of {2 with mesh size h
which satisfies as usual the minimum angle condition. For K € 7p, we
split the boundary 0K of the triangle K into an inflow part 0K_ and
an outflow part 0K defined by

OK_ = {z € 0K : n(z) -y < 0},
0K, ={x € 0K : n(z) - v > 0}.

Consider a function v which may have a jump discontinuity across in-
terelement boundaries. We define the left and right hand limits v_ and
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V4 by
v_(z) = lir(l)q v(z + 57),
s—0~
v4(@) = lim o+ s7)

and we also define the jump [v] across interelement boundaries by
[v] = vy —v_.

We shall use the following notations: (v, w) = [, vwdz, (v,w)= [pvwn-
v ds,

(v,w)_:/ vwn - 7y ds, (v,w).,_z/ vwn - yds,
- Iy

where 'y = '\I'_ = {z € T : n(z) - v > 0}, dz denotes the element of
area in R? and ds the element of arc length along the boundary.

In order to obtain a variational formulation of problem (2.1), we mul-
tiply the differential equation of (2.1) with an arbitrary test function
v € H(Q) and then integrate it over Q. According to the Green'’s for-
mula and the boundary condition, we thus have the following variational
formulation: Find u € L2(Q) such that

(2'2) _(u’v’y) + (U’U) + <u’v>+ = (f,U) - (g,v)_, Vv € Hl(Q)

We shall now consider the discontinuous Galerkin finite element me-
thod for (2.2). It is based on using the following finite element space:

Wy, = {v e L*9) :v|x € P(K),VK € Tp.}.

That is, the space of piecewise polynomials of degree r > 0 with no con-
tinuity requirement across interelement boundaries. The discontinuous
Galerkin finite element method is then formulated to find u* € W}, such
that

Z /K(—uhv7 + utv) dz + (uP,v)

KeT,

= Z/fvdx—(g,v)n, Yv € P.(K).
K

KeTy,

(2.3)

We also use Green’s formula for f " uhv7 dz to obtain

24 wPu, de = wPvin-yds+ u}iv+n'7ds— v de.
Y + Y
K oK _ oKy K
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Therefore, we have

Z /K uhv7 dr

KeTy,
= Z {/ u’iv+n-7ds+/ u’iv+n-'yds—/ uzvdw}
KeT, \JOK- K K
(2.5) = Z / u}}rmrn-'yds—l— Z / utvin-vds

oK_cr_ VoK~ 8K, cr, Y OK+

+{ Z / u’_,‘_v+n-7ds+ Z / u}iv+n~'yds}
OK_gT_ Y OK- oK ¢T, Y OK+

— Z / u'v‘vd:c.
KeT, K

Since 7;, is an admissible triangulation and u” is not required to be
continuous across interelement boundaries, we see that

/ u:‘_v+n-~yds+ Z / uPuyn . vds
OK_gqr_ JOK- 8K ¢T, Y OK+

= Z [uW"vin -y ds.

(2.6)

Thus, the equation (2.5) is written in the following form:

Z /K uthY dx

KeTy,
@7 = - Z/ugvdx—t— Z / uiv+n-7d3
KeT, 'K oK_cr_ Y OK-
+ Z / uPvin - yds+ Z / [WMvin - v ds.
K, cry Y OK+ OK_gr_ Y IK-
Since

/ UEU_;_TL-*}/ds = <uhav>+>
OKCT'} 0K+

from (2.7), we finally obtain the following compact form of the discon-
tinuous Galerkin finite element method for (2.3): Find u® € W}, such
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that
Z/ Uy b uMydz — Z / whvin.yds
KeT, dK_CT—

(2.8) — Z / [uMvin - vds

dK_gT_

/fvdx—/ guin-vyds, Vv e P.(K).
KEeT, r-

Since the function v in W)}, varies independently on each K, we may
alternatively formulate (2.8) independently as follows: For K € 7Tp,
given u® on OK_ find u* = uP|g € P,(K) such that

/(uf;-f—uh)vdx—/ ulvin-yds
(2.9) K )
:/fvdw—/ uPvin-yds, Vvc P.(K).
K OK_

Here we note that if 9K_ c I'_, then u” |sx_ = g is provided by (2.1).
Thus, if u® is given on 8K _, then u?|x is uniquely determined by (2.9).
Now, we may start to determine u” on the triangles K with 8K_ C I'_.
We then determine u” on the triangles K next to I'_ , and we may
continue this process until " is determined on the whole domain.

We now apply the discontinuous Galerkin finite element method (2.9)
to the Lotka-McKendrick equation (1.1). Let T > 0 be the final time
and let © = [0,a4] x [0,T]. The derivative direction v is then given by
v = (\/_ \/—) The inflow boundary ' consists of 'y = {(0,t) : ¢t > 0}
and 'y = {(a,0) : 0 < a < a4}, and T'_ = I'; |JT'2. Thus, equation (1.1)
may also be written as

1
(210) u’Y(a, t) + E,u(a)u(a,t) =0, in 0,

u(a’t) = g(aat)’ on F—’

where

1) glad {
Our variational problem for (2.10) is then to find u € L%(Q2) such that

212) (o) + (o) + (wr)s = —(g,0)-, Vo€ H'Q)

f B(o)u(o,t)do, if (a,t) €Ty,
UQ(G,), if (a,t) €Ts.
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We now consider the discontinuous Galerkin finite element method
using a triangulation in age-time domain for (2.12). For the convenience
of numerical computation, we shall consider the piecewise linear poly-
nomial space as an approximate space and let

Wy, = {v € L*() : v|g € P(K),VK € Ty}

be the space of piecewise linear polynomials with no continuity require-
ments across interelement boundaries. Here, we consider the uniform
triangulation 7, according to Figure 1. Let us denote by h = Aa = At
the age-time mesh size chosen so that M = 9hi is a positive even inte-
ger and let N = [%] be a positive integer. Let a; = th, 0<i < M,
¥ =j4h, 0<3j < N be the nodal coordinates. The triangles of 7,
are denoted by K] or K] depending on whether the inflow boundary is
parallel to the a-axis, or to the t-axis. Triangles Kg and I?f are shown
in Figure 2.

T
(ai-1, ')
& (ai,17)
KZ] (aiv tj—l)
(ai—la tj—‘l)
0 ' ay
Figure 1. Figure 2.

The discontinuous Galerkin method then reads: For K € 7, given
ul on OK_ find u" = uh|x € Pi(K) such that

1
/K(u’f; + %,uuh)v dx — /BK ulvin.yds

(2.13)
= —/ uPvin-vds, Vv e P(K).
OK_

Since n -y = —% on 0K_, (2.13) may also be written

(2.14)
/ (up +uf + pu)v dz + / ulvy ds = / uhuyds, Ve P(K).
K oK _ OK
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We compute the discrete solution u successively on one strip after an-
other starting for each strip on the left and moving triangle by triangle
to the right. We note that a function u® € P;(K) has the representation

3
(215) o' =0,
i=1

where the T; are the linear local shape functions appropriate to a three-
noded triangle element. Hence, substituting (2.15) into (2.14) with v =
Tj, j = 1,2,3, we obtain the following linear system of equations

(2.16) An = B,
where
A = (aij)3x3, a;j =/K(%%+%)T] dadt+Ag(K),
with
A(K) = /K ()T (a, )T (a, 1) dadt,
and

B=(lwa, b= [ u'Tds 0=
K.
We are frequently concerned with integrals taken over elements such as

(2.17) K%CZ / o, ZT da dt, / pIT; da dt.

Those double integrals are easily computed Wlth standard local shape
function 7} defined over the reference triangle K, with vertices (-1,-1),
(1,-1), (-1,1); thatlsfor(fn)EK

1

5(1+n).

Thus, we easily obtain, from (2.17) (2.18), that, for K = Kf ,
b+ Al(K) § h L A2(K
A=

(2.18) ﬁ=—§(€+77), Tz—-l(1+€) Ty =

) AY(K)
A (K) 2+A2(K) —g+A3( ))
hpAl(K) 2+A4K) &+ AYK)

Similarly we see that, for K = Kf ,

by alK) M)
A= (g +ANK) §+ A3 (K)
AYK) b+ AK)

+ A3 (K)

n +A%(K)>
+ A}(K)

= I~ e
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Due to the different type of inflow boundary condition (2.11), vector B
is computed in different way depending on K. For 0K_ C I'y, we have

faK- ug(a)T1 da
B = 0
Jox vo(a)Tsda

For 0K_ C I'1, the boundary condition involves the unknown function
u". We approximately compute «”(0,/) using Simpson’s rule and we
let

5 M/2

. h j h j

s(4) = m{ﬂ(af)u |K§4 (aT,tJ)+4; B(agi—1)u lKgi_l(azz'—ut])

(M~2)/2

F20Y Hoail (o)}
i=1

Then we have, for 0K_ c T'y,
§(2s() +s(j — 1))
Rz
6

(2s(7 = 1) +5(5))
0

B =

We note that, for K = K ZJ , j # 1, B is obtained from the previous strip
and we have that
ten+9)
B = 0 ,
b(26 +n)

where § = u”|zj-1(a;_1,t7) and 7 = uP|z;-1(a;,t77). Similarly, we

see that, for K = K ZJ , © # 1, B is obtained from the previous step of this
strip. Thus, we have

%(ZS—H)
B={g@l+s)],
0
— bl (g . ] — bl . (g i i1
where s = u |Kg_1(az_1,t )and l=u |K3_l(al_1,t ).

We compute the discrete solution u" successively on one strip after
p y p

another starting for each strip on the left and moving triangle by triangle
to the right. More precisely, we first compute u” on K] fori=1,..,M,
over the strip [0,at] x [t#71,#/]. Second, we compute u" on I?f for
¢ = 1,...,M, over the same strip. We then march to the next strip
[0,as] x [t7,t9H1).
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3. Numerical results

In this section we present numerical results. In the test we computed
the order of convergence of the algorithms by the well-known formula:

o8 5.5

log 2

ri(h) = , ©1=1,2,

where E1(h), Eo(h) are the approximation errors defined by
Ei(h) = max |u®(ai,t!) — u(ai, t')],

J=1,:2>0
Ea(h) = |lu(-,-) = ul- )2,
respectively, for population density, where || - |2 denotes L? norm and

the notation u(-,-) denotes exact solution.

ExAMPLE 3.1. We solve problem (2.10) with the following data:
ay = 1, B(a) = 20a(l — a), p(a) = 10exp(—100(1 — a)) and u(a,0) =
uo{a) where up(a) is to be specified later.

We then find the exact solution of separable type u(a,t) = wow(a)p(t),
where p(t) is the solution of

p'=a"p, p(0) =1,
so that the total population p is given as
p(t) = exp(a™t)
and

w(a) = exp(~ [ ) de - a%a).

Here a* is given by the relation

1
lz‘/0 B(a)w(a) da

and is computed as
o & 2.78576939.

wyp is also given by the relation

1
1:/ wow(a) da,
0

and is computed as
wp =~ 2.969447356.
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We then note that the compatibility condition at (0,0) is satisfied, which
guarantees the continuity of the solution u(a,t). We take up(a) = wow(a)
as the initial data.

Convergence results are shown to the Table 1.

h El(h) Tl(h) Ez(h) T'Q(h)
1/8 0.400262 | 1.938250 || 0.0905811 | 2.060904
1/16 0.102512 | 1.965158 || 0.0225618 | 2.005334
1/32 0.028436 | 1.933149 || 0.0057869 | 1.963026
1/64 | 0.00708297 | 1.922158 || 0.00149810 | 1.949663
1/128 || 0.00183668 | 1.947260 || 0.00038371 | 1.965067

TABLE 1. Convergence estimates for Example 3.1.

From Table 1, we see that the discontinuous Galerkin finite element
method converges with convergent rate of order 2 when the piecewise
linear polynomial space is used as an approximate space. In the next
example we consider the case that the mortality function p is unbounded.

EXAMPLE 3.2.  We solve problem (2.10) with the following data:
at = 1, B(a) = e, p(a) = 1=, and ug(a) = w(a) where w(a) is given
below. The exact solution is u(a,t) = w(a)p(t), where p(t) = e and
w(a) =(1—a)e ™.

h Ez(h) 7‘2(]1)
1/8 0.00233010 | 1.219569
1/16 || 0.000862253 | 1.434213
1/32 | 0.000305325 | 1.497770
1/64 | 0.000107350 | 1.508028
1/128 || 0.000037815 | 1.505308

TABLE 2. Convergence estimates for Example 3.2.

Table 2 shows the convergent rate is of order 3/2.
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