Abstract
A time-discontinuous Galerkin method based upon using a finite element formulation in time has evolved. This method, working from the differential equation viewpoint, is different from those which have been generally used. They admit discontinuities with respect to the time variable at each time step. In particular, the elements can be chosen arbitrarily at each time step with no connection with the elements corresponding to the previous step. Interpolation functions and weighting functions are taken to be discontinuous across inter-element boundaries. These methods lead to a unconditional stable higher-order accurate ordinary differential equation solver.
시간변수에 대하여 불연속성을 주는 시간불연속 Galerkin 방법을 유한요소법으로 해석하였다. 이 방법은 미분방정식 관점에서 지금까지 요소간에 연속성을 준 일반적 유한요소법과 다르게 임의의 시간요소를 선택, 매 시간단계에서 요소경계에 불연속을 허락함으로서 해의 정확성을 높이고 무조건의 안정을 주는 상미분방정식의 해법인 것이다.